Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(12): 33264-33274, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36474033

RESUMEN

Several nano-toxicological studies have assessed the prospective health risks of engineered nanostructures. Still, nanoscale ingredients from food products are not explored well, and only a few have attended to the possible effects of food additive-based nanoparticles in food. The physicochemical properties of food additives and their fate on human health are still unknown. To fill this knowledge gap, we examined the physicochemical characteristics of food product isolate E341/E551. Additionally, we assessed the consequence of these nanoscale E341 and E551 as co-exposure on human mesenchymal stem cells (hMSCs). The transmission electron microscope (TEM) images revealed that food product isolate (E341/E551) consists of nanoscale particles. The E551 and E341 have 20-50 nm and 70-200 nm diameters, respectively. Co-exposure of food additives SiO2 (E551) and Tricalcium phosphate (E341) effect on the cell viability, morphology, mitochondrial membrane potential, and reactive oxygen species (ROS) level of hMSCs were studied. The cell viability reduction, mitochondrial membrane potential loss, and ROS generation in E341/E551 co-exposed cells were observed. Our study suggests that E341/E551 co-exposure elevated the ROS level and mitochondrial membrane potential depletion at a high dose. The oxidative stress-related genes MDM3, TNFSF10, and POR have exhibited significant upregulation in the E341/E551 treatment group. These results conclude that long-term over-exposure to E341/E551 may be triggers health risks in a human. Further in vivo studies are required for food industry implications due to nanoscale ingredients in E341 and E551.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Nanopartículas/toxicidad , Nanopartículas/química , Aditivos Alimentarios/toxicidad
2.
Appl Biochem Biotechnol ; 181(2): 725-734, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27778152

RESUMEN

Nanographene- and graphene-based nanohybrids have garnered attention in the biomedical community owing to their biocompatibility, excellent aqueous processability, ease of cellular uptake, facile surface functionalization, and thermal and electrical conductivities. NiO nanoparticle-graphene nanohybrid (G-NiO) was synthesized by first depositing Ni(OH)2 onto the surface of graphene oxide (GO) sheets. The Ni(OH)2-GO hybrids were then reduced to G-NiO using date palm syrup at 85 °C. The prepared G-NiO nanohybrids were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The NiO nanoparticles, with a diameter of approximately 20-30 nm, were uniformly dispersed over the surface of the graphene sheets. The G-NiO hybrids exhibit biocompatibility in human mesenchymal stem cells (hMSCs) up to 100 µg/mL. The nanohybrids do not cause any significant changes in cellular and nuclear morphologies in hMSCs. The as-synthesized nanohybrids show excellent biocompatibility and could be a promising material for biomedical applications.


Asunto(s)
Grafito/química , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Níquel/química , Níquel/toxicidad , Phoeniceae/química , Absorción Fisicoquímica , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/toxicidad , Grafito/toxicidad , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/toxicidad
3.
Environ Toxicol ; 31(8): 901-12, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25532727

RESUMEN

The use of engineered nanoparticles (NPs) across multiple fields and applications has rapidly increased over the last decade owing to their unusual properties. However, there is an increased need in understanding their toxicological effect on human health. Particularly, iron oxide (Fe3 O4 ) have been used in various sectors, including biomedical, food, and agriculture, but the current understanding of their impact on human health is inadequate. In this investigation, we assessed the toxic effect of Fe3 O4 NPs on human mesenchymal stem cells (hMSCs) adopting cell viability, cellular morphological changes, mitochondrial transmembrane potential, and cell-cycle progression assessment methodologies. Furthermore, the expression of oxidative stress, cell death, and cell-cycle regulatory genes was assessed using quantitative polymerase chain reaction. The Fe3 O4 NPs induced cytotoxicity and nuclear morphological changes in hMSCs by dose and time exposure. Cell-cycle analysis indicated that Fe3 O4 NPs altered the cell-cycle progression through a decrease in the proportion of cells in the G0 -G1 phase. The hMSC mitochondrial membrane potential loss increased with an increase in the concentration of Fe3 O4 NPs exposure. The observed expression levels of the CYP1A, TNF3, TNFSF10, E2F1, and CCNC genes were significantly upregulated in hMSCs in response to Fe3 O4 NPs exposure. Our findings suggest that Fe3 O4 NPs caused metabolic stress through altered cell cycle, oxidative stress, and cell death regulatory gene expression in hMSCs. The results of this investigation revealed that Fe3 O4 NPs exhibited moderate toxicity on hMSCs and that Fe3 O4 NPs may have biomedical applications at low concentrations. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 901-912, 2016.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Expresión Génica/efectos de los fármacos , Nanopartículas de Magnetita/toxicidad , Células Madre Mesenquimatosas/fisiología , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...