Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(5): e2208266, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36398430

RESUMEN

Ferroelectricity, one of the keys to realize non-volatile memories owing to the remanent electric polarization, is an emerging phenomenon in the 2D limit. Yet the demonstrations of van der Waals (vdW) memories using 2D ferroelectric materials as an ingredient are very limited. Especially, gate-tunable ferroelectric vdW memristive device, which holds promises in future multi-bit data storage applications, remains challenging. Here, a gate-programmable multi-state memory is shown by vertically assembling graphite, CuInP2 S6 , and MoS2 layers into a metal(M)-ferroelectric(FE)-semiconductor(S) architecture. The resulted devices seamlessly integrate the functionality of both FE-memristor (with ON-OFF ratios exceeding 105 and long-term retention) and metal-oxide-semiconductor field effect transistor (MOS-FET). Thus, it yields a prototype of gate tunable giant electroresistance with multi-levelled ON-states in the FE-memristor in the vertical vdW assembly. First-principles calculations further reveal that such behaviors originate from the specific band alignment between the FE-S interface. Our findings pave the way for the engineering of ferroelectricity-mediated memories in future implementations of 2D nanoelectronics.

2.
ACS Sens ; 5(11): 3297-3305, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32975110

RESUMEN

The acceleration of climatic, digital, and health challenges is testing scientific communities. Scientists must provide concrete answers in terms of technological solutions to a society which expects immediate returns on the public investment. We are living such a scenario on a global scale with the pandemic crisis of COVID-19 where expectations for virological and serological diagnosis tests have been and are still gigantic. In this Perspective, we focus on a class of biosensors (mechanical biosensors) which are ubiquitous in the literature in the form of high performance, sensitive, selective, low-cost biological analysis systems. The spectacular development announced in their performance in the last 20 years suggested the possibility of finding these mechanical sensors on the front line of COVID-19, but the reality was quite different. We analyze the cause of this rendez-vous manqué, the operational criteria that kept these biosensors away from the field, and we indicate the pitfalls to avoid in the future in the development of all types of biosensors of which the ultimate goal is to be immediately operational for the intended application.


Asunto(s)
Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Sistemas Microelectromecánicos , COVID-19/virología , Humanos , Límite de Detección , Pronóstico , ARN Viral/genética , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
3.
Nat Commun ; 11(1): 1205, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139679

RESUMEN

Since its invention in the 1960s, one of the most significant evolutions of metal-oxide-semiconductor field effect transistors (MOS-FETs) would be the three dimensionalized version that makes the semiconducting channel vertically wrapped by conformal gate electrodes, also recognized as FinFET. During the past decades, the width of fin (W[Formula: see text]) in FinFETs has shrunk from about 150 nm to a few nanometers. However, W[Formula: see text] seems to have been levelling off in recent years, owing to the limitation of lithography precision. Here, we show that by adapting a template-growth method, different types of mono-layered two-dimensional crystals are isolated in a vertical manner. Based on this, FinFETs with one atomic layer fin are obtained, with on/off ratios reaching [Formula: see text]. Our findings push the FinFET to the sub 1 nm fin-width limit, and may shed light on the next generation nanoelectronics for higher integration and lower power consumption.

4.
Science ; 362(6417): 918-922, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30467165

RESUMEN

Measurement of the mass of particles in the mega- to gigadalton range is challenging with conventional mass spectrometry. Although this mass range appears optimal for nanomechanical resonators, nanomechanical mass spectrometers often suffer from prohibitive sample loss, extended analysis time, or inadequate resolution. We report on a system architecture combining nebulization of the analytes from solution, their efficient transfer and focusing without relying on electromagnetic fields, and the mass measurements of individual particles using nanomechanical resonator arrays. This system determined the mass distribution of ~30-megadalton polystyrene nanoparticles with high detection efficiency and effectively performed molecular mass measurements of empty or DNA-filled bacteriophage T5 capsids with masses up to 105 megadaltons using less than 1 picomole of sample and with an instrument resolution above 100.


Asunto(s)
Cápside/química , Cápside/ultraestructura , Espectrometría de Masas/métodos , Nanotecnología/métodos , ADN Viral/química , Campos Electromagnéticos , Nanopartículas/química , Poliestirenos/química , Fagos T/química , Fagos T/ultraestructura
5.
Nat Commun ; 9(1): 3283, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115919

RESUMEN

One of the main challenges to overcome to perform nanomechanical mass spectrometry analysis in a practical time frame stems from the size mismatch between the analyte beam and the small nanomechanical detector area. We report here the demonstration of mass spectrometry with arrays of 20 multiplexed nanomechanical resonators; each resonator is designed with a distinct resonance frequency which becomes its individual address. Mass spectra of metallic aggregates in the MDa range are acquired with more than one order of magnitude improvement in analysis time compared to individual resonators. A 20 NEMS array is probed in 150 ms with the same mass limit of detection as a single resonator. Spectra acquired with a conventional time-of-flight mass spectrometer in the same system show excellent agreement. We also demonstrate how mass spectrometry imaging at the single-particle level becomes possible by mapping a 4-cm-particle beam in the MDa range and above.

6.
Nat Nanotechnol ; 11(6): 552-558, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26925826

RESUMEN

Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.

7.
Nat Commun ; 6: 6482, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25753929

RESUMEN

Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the species' charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all the charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting-edge system architectures with unique analytical capability.

9.
Anal Chem ; 85(5): 2754-9, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23363062

RESUMEN

Graphene's suite of useful properties makes it of interest for use in biosensors. However, graphene interacts strongly with hydrophobic components of biomolecules, potentially altering their conformation and disrupting their biological activity. We have immobilized the protein Concanavalin A onto a self-assembled monolayer of multivalent tripodal molecules on single-layer graphene. We used a quartz crystal microbalance (QCM) to show that tripod-bound Concanavalin A retains its affinity for polysaccharides containing α-D-glucopyrannosyl groups as well as for the α-D-mannopyranosyl groups located on the cell wall of Bacillus subtilis. QCM measurements on unfunctionalized graphene indicate that adsorption of Concanavalin A onto graphene is accompanied by near-complete loss of these functions, suggesting that interactions with the graphene surface induce deleterious structural changes to the protein. Given that Concanavalin A's tertiary structure is thought to be relatively robust, these results suggest that other proteins might also be denatured upon adsorption onto graphene, such that the graphene-biomolecule interface must be considered carefully. Multivalent tripodal binding groups address this challenge by anchoring proteins without loss of function and without disrupting graphene's desirable electronic structure.


Asunto(s)
Concanavalina A/química , Concanavalina A/metabolismo , Grafito/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Adsorción , Bacillus subtilis/citología , Canavalia/química , Pared Celular/metabolismo , Células Inmovilizadas/metabolismo , Lipopolisacáridos/metabolismo , Ácidos Teicoicos/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-23366921

RESUMEN

In this work we simultaneously aim at addressing the design and fabrication of microelectromechanical systems (MEMS) for biological applications bearing actuation and readout capabilities together with adapted tools dedicated to surface functionalization at the microscale. The biosensing platform is based on arrays of silicon micromembranes with piezoelectric actuation and piezoresistive read-out capabilities. The detection of the cytochrome C protein using molecularly imprinted polymers (MIPs) as functional layer is demonstrated. The adapted functionalization tool specifically developed to match the micromembranes' platform is an array of silicon cantilevers incorporating precise force sensors for the trim and force measurements during deposition of biological materials onto the sensors' active area. In either case, associated analog electronics is specifically realized to deal with specific signals treatment fed through the MEMS-based devices.


Asunto(s)
Técnicas Biosensibles/instrumentación , Citocromos c/análisis , Sistemas Microelectromecánicos/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Integración de Sistemas
11.
Nano Lett ; 11(10): 4232-8, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21919532

RESUMEN

Graphene represents the ultimate substrate for high-resolution transmission electron microscopy, but the deposition of biological samples on this highly hydrophobic material has until now been a challenge. We present a reliable method for depositing ordered arrays of individual elongated DNA molecules on single-layer graphene substrates for high-resolution electron beam imaging and electron energy loss spectroscopy analysis. This method is a necessary step toward the observation of single elongated DNA molecules with single base spatial resolution to directly read genetic and epigenetic information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...