Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Intern Emerg Med ; 18(7): 1981-1993, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37592135

RESUMEN

COVID-19 induces endotheliitis and one of the main complications is enhanced coagulation. The incidence of pulmonary embolism (PE) in COVID-19 (CPE) has increased and clinical features for a rigorous analysis still need to be determined. Thus, we evaluated the clinical characteristics in CPE and the immune infiltration that occurred. Between January 1 and December 31, 2021, 38 patients were affected by CPE (9 ICU, 19 males/19 females, 70.18 ± 11.24 years) out of 459 COVID-19 cases. Controls were subjects who were evaluated for PE between January 1 2015, and December 31, 2019 (92 patients, 9 ICU, 48 males/45 females, 69.55 ± 16.59 years). All patients underwent complete physical examination, pulmonary computed tomography, laboratory tests, D-dimer, and blood gas analysis. There were no differences in laboratory tests or D-dimer. In patients with CPE, pO2, alveolar-arterial oxygen difference (A-aDO2), oxygen saturation %, and the ratio between arterial partial pressure of oxygen (PaO2) and fraction of inspired oxygen (FiO2), P/F, were significantly increased. There were no differences in PaCO2. Platelet count was inversely correlated to P/F (r = - 0.389, p = 0.02) but directly to A-aDO2 (r = 0.699, p = 0.001) only in patients with CPE. Histology of lung biopsies (7 CPE/7 controls) of patients with CPE showed an increase in CD15+ cells, HMGB1, and extracellular MPO as a marker of NETosis, while no significant differences were found in CD3+, CD4+, CD8+, and intracellular MPO. Overall, data suggest that CPE has a different clinical setting. Reduced oxygen content and saturation described in Patients with CPE should not be considered a trustworthy sign of disease. Increased A-aDO2 may indicate that CPE involves the smallest vessels as compared to classical PE. The significant difference in NETosis may suggest the mechanism related to thrombi formation.


Asunto(s)
COVID-19 , Embolia Pulmonar , Masculino , Femenino , Humanos , COVID-19/complicaciones , Embolia Pulmonar/epidemiología , Embolia Pulmonar/etiología , Arterias , Oxígeno , Proyectos de Investigación , Estudios Retrospectivos
3.
Cell Rep ; 42(8): 112901, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37505982

RESUMEN

Individuals with fragile X syndrome (FXS) are frequently diagnosed with autism spectrum disorder (ASD), including increased risk for restricted and repetitive behaviors (RRBs). Consistent with observations in humans, FXS model mice display distinct RRBs and hyperactivity that are consistent with dysfunctional cortico-striatal circuits, an area relatively unexplored in FXS. Using a multidisciplinary approach, we dissect the contribution of two populations of striatal medium spiny neurons (SPNs) in the expression of RRBs in FXS model mice. Here, we report that dysregulated protein synthesis at cortico-striatal synapses is a molecular culprit of the synaptic and ASD-associated motor phenotypes displayed by FXS model mice. Cell-type-specific translational profiling of the FXS mouse striatum reveals differentially translated mRNAs, providing critical information concerning potential therapeutic targets. Our findings uncover a cell-type-specific impact of the loss of fragile X messenger ribonucleoprotein (FMRP) on translation and the sequence of neuronal events in the striatum that drive RRBs in FXS.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Animales , Humanos , Ratones , Síndrome del Cromosoma X Frágil/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 24(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37240091

RESUMEN

At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders-including patients suffering from cancer-were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.


Asunto(s)
COVID-19 , Enfermedades del Sistema Inmune , Neoplasias , Humanos , Masculino , SARS-CoV-2 , Pandemias , Neoplasias/epidemiología , Gravedad del Paciente
5.
Nat Commun ; 14(1): 2150, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076542

RESUMEN

Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson's disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson's disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.


Asunto(s)
Enfermedad de Parkinson , Masculino , Femenino , Animales , Ratas , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
6.
Medicina (Kaunas) ; 59(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837405

RESUMEN

Background and Objectives: COVID-19 induces massive systemic inflammation. Researchers have spent much time and effort finding an excellent and rapid image tool to evaluate COVID-19 patients. Since the pandemic's beginning, lung ultrasound (LUS) has been identified for this purpose. Monoclonal antibodies (mAb) were used to treat mild patients and prevent respiratory disease worsening. Materials and Methods: We evaluated 15 Caucasian patients with mild COVID-19 who did not require home oxygen, treated with Bamlanivimab and Etesevimab (Group 1). A molecular nose-throat swab test confirmed the diagnosis. All were office patients, and nobody was affected by respiratory failure. They were admitted to receive the single-day infusion of mAb treatment in agreement with the Italian Drug Agency (AIFA) rules for approval. LUS was performed before the drug administration (T0) and after three months (T1). We compared LUS at T1 in other outpatients who came for follow-up and were overlapping at the time of diagnosis for admittance criteria to receive mAb (Group 2). Results: Our COVID-19 outpatients reported no hospitalization in a follow-up visit after recovery. All patients became SARS-CoV-2 negative within one month since T0. LUS score at T0 was 8.23 ± 6.46. At T1 we found a significant decrease in Group 1 LUS score (5.18 ± 4.74; p < 0.05). We also found a significant decrease in the LUS score of Group 1 T1 compared to Group2 T1 (5.18 ± 4.74 vs 7.82 ± 5.21; p < 0.05). Conclusion: Early treatment of the SARS-CoV-2 virus effectively achieves a better recovery from disease and reduces lung involvement after three months as evaluated with LUS. Despite extrapolation to the general population may be done with caution, based on our data this ultrasound method is also effective for evaluating and following lung involvement in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Proyectos Piloto , SARS-CoV-2 , Pulmón/diagnóstico por imagen , Ultrasonografía/métodos
7.
J Clin Med ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012931

RESUMEN

Introduction: Only little data exists on ST2 reference intervals in healthy pediatric populations despite the high importance of this biomarker in adults with heart failure. The aim of the study was to assess the reference intervals of ST2 in a wide healthy pediatric cohort. Methods: We evaluated the serum concentrations of ST2 biomarker in 415 healthy pediatric subjects referred to our analysis laboratory. Subjects were categorized according to age (i.e., 0−6 (n = 79), 7−11 (n = 142) and 12−18 years (n = 191)) and sex. They were not suffering from any cardiac disorders, metabolic disorders, lung diseases, autoimmune disorders or malignancies. A written consent was obtained for each individual. No duplicate patients were included in the analysis and the presence of outliers was investigated. Reference intervals (Mean and central 95% confidence intervals) were determined. Results: Three outliers have been identified and removed from the analysis (60.0, 64.0 and 150.2 ng/mL). A total of 412 subjects were therefore included. The mean value for the whole population was 15.8 ng/mL (2.4−36.4 ng/mL). Males present a significantly higher mean concentration compared to females (17.2 versus 14.4 ng/mL, p = 0.001). A significant trend toward higher ST2 values with age was also observed, but for males only (r = 0.43, p < 0.0001). If considering age partitions, only males of 12−18 years (mean = 21.7 ng/mL) had significantly higher ST2 values compared to the other groups (ranging from 11.9 for males 0−6 years to 15.2 for females 12−18 years; p < 0.0001). Conclusions: We described age and sex-specific reference intervals for ST2 in a large healthy pediatric population. We found that ST2 values differ between sexes if considering all participants. A significant increase in ST2 with age was also observed, but only for males of 12−18 years.

8.
Biomedicines ; 10(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35453631

RESUMEN

The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson's disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 α-synuclein (pSer129 α-syn) immunoreactivity elevation at 12 months of age, which might represent pathological events leading to neuronal degeneration. Here, the time-dependence of these changes was monitored in the striatum of 6, 9, 12, 18 and 23-month-old G2019S KI mice and wild-type controls using DA uptake assay, Western analysis and immunohistochemistry. Western analysis showed elevation of membrane dopamine transporter (DAT) levels at 9 and 12 months of age, along with a reduction of vesicular monoamine transporter 2 (VMAT2) levels at 12 months. DAT uptake was abnormally elevated from 9 to up to 18 months. DAT and VMAT2 level changes were specific to the G2019S mutation since they were not observed in LRRK2 kinase-dead or knock-out mice. Nonetheless, dysfunctional DAT uptake was not normalized by acute pharmacological inhibition of LRRK2 kinase activity with MLi-2. Immunoblot analysis showed elevation of pSer129 α-syn levels in the striatum of 12-month-old G2019S KI mice, which, however, was not confirmed by immunohistochemical analysis. Instead, total α-syn immunoreactivity was found elevated in the striatum of 23-month-old LRRK2 knock-out mice. These data indicate mild changes in DA transporters and α-syn metabolism in the striatum of 12-month-old G2019S KI mice whose pathological relevance remains to be established.

9.
Insects ; 13(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35323578

RESUMEN

Drosophila suzukii (Matsumara) is an herbivorous pest whose control in the field with conventional chemical is particularly difficult and has important drawbacks. Here, we investigated the insecticidal properties of hydrolate from Monarda didyma, scarlet beebalm, an aromatic herb in the Lamiaceae family. The identification of volatile organic compounds (VOCs) by CG-MS systems revealed that thymol (38%) and carvacrol (59%) were the most abundant VOCs in the hydrolate. M. didyma hydrolate did not show fumigant toxicity. Conversely, in contact assays, M. didyma hydrolate showed a LC50 of 5.03 µL mL-1, 48 h after the application on D. suzukii adults. Expression of detoxification genes increased in flies that survived the LC50 application. Furthermore, toxicity persisted for 7 days after the treatment in the survival evaluation. Artificial diet assays with 100 and 1000 µL mL-1 of M. didyma hydrolate resulted in a significant decrease in total food intake in both male and female D. suzukii adults. In addition, electropenetrography (EPG) showed that the D. suzukii females' feeding behaviour was altered in hydrolate-treated diets. The hydrolate also caused a significant reduction in the number of eggs laid in two different oviposition assays. Overall, our findings provide a new perspective for the improvement of D. suzukii control strategies through M. didyma hydrolate.

10.
Biochem Soc Trans ; 50(1): 621-632, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225340

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.


Asunto(s)
Enfermedad de Parkinson , Animales , Autofagia/genética , Neuronas Dopaminérgicas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Ratones , Mutación , Enfermedad de Parkinson/metabolismo
11.
J Nephrol ; 35(4): 1235-1242, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35041197

RESUMEN

BACKGROUND: Advanced stages of different renal diseases feature glomerular sclerosis at a histological level which is observed by light microscopy on tissue samples obtained by performing a kidney biopsy. Computer-aided diagnosis (CAD) systems leverage the potential of artificial intelligence (AI) in healthcare to support physicians in the diagnostic process. METHODS: We propose a novel CAD system that processes histological images and discriminates between sclerotic and non-sclerotic glomeruli. To this goal, we designed, tested, and compared two artificial neural network (ANN) classifiers. The former implements a shallow ANN classifying hand-crafted features extracted from Regions of Interest (ROIs) by means of image-processing procedures. The latter, instead, employs the IBM Watson Visual Recognition System, which uses a deep artificial neural network making decisions taking the images as input, without the need to design any procedure for describing images with features. The input dataset consisted of 428 sclerotic glomeruli and 2344 non-sclerotic glomeruli derived from images of kidney biopsies scanned by the Aperio ScanScope System. RESULTS: Both AI approaches allowed to very accurately distinguish (mean MCC 0.95 and mean Accuracy 0.99) between sclerotic and non-sclerotic glomeruli. Although the systems may seem interchangeable, the approach based on feature extraction and classification would allow clinicians to gain information on the most discriminating features. In fact, further procedures could explain the classifier's decision by analysing which subset of features impacted the most on the final decision. CONCLUSIONS: We developed a customizable support system that can facilitate the work of renal pathologists both in clinical and research settings.


Asunto(s)
Inteligencia Artificial , Enfermedades Renales , Femenino , Humanos , Riñón/patología , Enfermedades Renales/patología , Glomérulos Renales/patología , Masculino , Redes Neurales de la Computación , Esclerosis/patología
12.
Neurobiol Dis ; 162: 105579, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871735

RESUMEN

The G2019S mutation of LRRK2 represents a risk factor for idiopathic Parkinson's disease. Here, we investigate whether LRRK2 kinase activity regulates susceptibility to the environmental toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). G2019S knock-in mice (bearing enhanced kinase activity) showed greater nigro-striatal degeneration compared to LRRK2 knock-out, LRRK2 kinase-dead and wild-type mice following subacute MPTP treatment. LRRK2 kinase inhibitors PF-06447475 and MLi-2, tested under preventive or therapeutic treatments, protected against nigral dopamine cell loss in G2019S knock-in mice. MLi-2 also rescued striatal dopaminergic terminal degeneration in both G2019S knock-in and wild-type mice. Immunoblot analysis of LRRK2 Serine935 phosphorylation levels confirmed target engagement of LRRK2 inhibitors. However, MLi-2 abolished phosphoSerine935 levels in the striatum and midbrain of both wild-type and G2019S knock-in mice whereas PF-06447475 partly reduced phosphoSerine935 levels in the midbrain of both genotypes. In vivo and ex vivo uptake of the 18-kDa translocator protein (TSPO) ligand [18F]-VC701 revealed a similar TSPO binding in MPTP-treated wild-type and G2019S knock-in mice which was consistent with an increased GFAP striatal expression as revealed by Real Time PCR. We conclude that LRRK2 G2019S, likely through enhanced kinase activity, confers greater susceptibility to mitochondrial toxin-induced parkinsonism. LRRK2 kinase inhibitors are neuroprotective in this model.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Cuerpo Estriado/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Mutación , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Fosforilación
13.
Neurobiol Dis ; 159: 105487, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419621

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease. LRRK2 modulates the autophagy-lysosome pathway (ALP), a clearance process subserving the quality control of cellular proteins and organelles. Since dysfunctional ALP might lead to α-synuclein accumulation and, hence, Parkinson's disease, LRRK2 kinase modulation of ALP, its age-dependence and relation with pSer129 α-synuclein inclusions were investigated in vivo. Striatal ALP markers were analyzed by Western blotting in 3, 12 and 20-month-old LRRK2 G2019S knock-in mice (bearing enhanced kinase activity), LRRK2 knock-out mice, LRRK2 D1994S knock-in (kinase-dead) mice and wild-type controls. The lysosomotropic agent chloroquine was used to investigate the autophagic flux in vivo. Quantitative Real-time PCR was used to quantify the transcript levels of key ALP genes. The activity of the lysosomal enzyme glucocerebrosidase was measured using enzymatic assay. Immunohistochemistry was used to co-localize LC3B puncta with pSer129 α-synuclein inclusion in striatal and nigral neurons. No genotype differences in ALP markers were observed at 3 months. Conversely, increase of LC3-I, p62, LAMP2 and GAPDH levels, decrease of p-mTOR levels and downregulation of mTOR and TFEB expression was observed in 12-month-old kinase-dead mice. The LC3-II/I ratio was reduced following administration of chloroquine, suggesting a defective autophagic flux. G2019S knock-in mice showed LAMP2 accumulation and downregulation of ALP key genes MAP1LC3B, LAMP2, mTOR, TFEB and GBA1. Subacute administration of the LRRK2 kinase inhibitor MLi-2 in wild-type and G2019S knock-in mice did not replicate the pattern of kinase-dead mice. Lysosomal glucocerebrosidase activity was increased in 3 and 12-month-old knock-out and kinase-dead mice. LC3B puncta accumulation and pSer129 α-synuclein inclusions were dissociated in striatal neurons of kinase-dead and G2019S knock-in mice. We conclude that constitutive LRRK2 kinase silencing results in early deregulation of GCase activity followed by late impairment of macroautophagy and chaperone-mediated autophagy.


Asunto(s)
Envejecimiento/genética , Autofagia/genética , Glucosilceramidasa/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Neostriado/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Envejecimiento/metabolismo , Animales , Técnicas de Sustitución del Gen , Silenciador del Gen , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas , Ratones , Ratones Noqueados , Enfermedad de Parkinson/metabolismo
14.
J Clin Med ; 10(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209964

RESUMEN

BACKGROUND AND AIM: The review aimed to summarize advances in the topic of endocrine diseases and coronavirus disease 2019 (COVID-19). METHODS: Scientific and institutional websites and databases were searched and data were collected and organized, when plausible, to angle the discussion toward the following clinical issues. (1) Are patients with COVID-19 at higher risk of developing acute or late-onset endocrine diseases or dysfunction? (2) May the underlying endocrine diseases or dysfunctions be considered risk factors for poor prognosis once the infection has occurred? (3) Are there defined strategies to manage endocrine diseases despite pandemic-related constraints? Herein, the authors considered only relevant and more frequently observed endocrine diseases and disorders related to the hypothalamic-pituitary region, thyroid and parathyroid glands, calcium-phosphorus homeostasis and osteoporosis, adrenal glands, and gonads. Main. Data highlight the basis of some pathophysiological mechanisms and anatomical alterations of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-induced endocrine dysfunctions. Some conditions, such as adrenal insufficiency and cortisol excess, may be risk factors of worse clinical progression once the infection has occurred. These at-risk populations may require adequate education to avoid the SARS-CoV-2 infection and adequately manage medical therapy during the pandemic, even in emergencies. Endocrine disease management underwent a palpable restraint, especially procedures requiring obligate access to healthcare facilities for diagnostic and therapeutic purposes. Strategies of clinical triage to prioritize medical consultations, laboratory, instrumental evaluations, and digital telehealth solutions should be implemented to better deal with this probably long-term situation.

15.
Biomedicines ; 9(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063112

RESUMEN

Mutations in the PARK2 gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP), a neurodegenerative disease characterized by early dysfunction and loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). No therapy is currently available to prevent or slow down the neurodegeneration in ARJP patients. Preclinical models are key to clarifying the early events that lead to neurodegeneration and reveal the potential of novel neuroprotective strategies. ParkinQ311X is a transgenic mouse model expressing in DA neurons a mutant parkin variant found in ARJP patients. This model was previously reported to show the neuropathological hallmark of the disease, i.e., the progressive loss of DA neurons. However, the early dysfunctions that precede neurodegeneration have never been investigated. Here, we analyzed SNc DA neurons in parkinQ311X mice and found early features of mitochondrial dysfunction, extensive cytoplasmic vacuolization, and dysregulation of spontaneous in vivo firing activity. These data suggest that the parkinQ311X mouse recapitulates key features of ARJP and provides a useful tool for studying the neurodegenerative mechanisms underlying the human disease and for screening potential neuroprotective drugs.

16.
J Clin Res Pediatr Endocrinol ; 13(3): 347-352, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-32840097

RESUMEN

We describe a 46,XX girl with Denys-Drash syndrome, showing both kidney disease and genital abnormalities, in whom a misdiagnosis of hyperandrogenism was made. A 15 year-old girl was affected by neonatal nephrotic syndrome, progressing to end stage kidney failure. Hair loss and voice deepening were noted during puberty. Pelvic ultrasound and magnetic resonance imaging showed utero-tubaric agenesis, vaginal atresia and urogenital sinus, with inguinal gonads. Gonadotrophin and estradiol levels were normal, but testosterone was increased up to 285 ng/dL at Tanner stage 3. She underwent prophylactic gonadectomy. Histopathology reported fibrotic ovarian cortex containing numerous follicles in different maturation stages and rudimental remnants of Fallopian tubes. No features of gonadoblastoma were detected. Unexpectedly, testosterone levels were elevated four months after gonadectomy (157 ng/dL). Recent medical history revealed chronic daily comsumption of high dose biotin, as a therapeutic support for hair loss. Laboratory immunoassay instruments used streptavidin-biotin interaction to detect hormones and, in competitive immunoassays, high concentrations of biotin can result in false high results. Total testosterone, measured using liquid chromatography tandem mass spectrometry, was within reference intervals. Similar testosterone levels were detected on repeat immunoassay two weeks after biotin uptake interruption. Discordance between clinical presentation and biochemical results in patients taking biotin, should raise the suspicion of erroneous results. Improved communication among patients, health care providers, and laboratory professionals is required concerning the likelihood of biotin interference with immunoassays.


Asunto(s)
Biotina/efectos adversos , Síndrome de Denys-Drash/genética , Suplementos Dietéticos/efectos adversos , Adolescente , Castración , Síndrome de Denys-Drash/complicaciones , Síndrome de Denys-Drash/diagnóstico , Síndrome de Denys-Drash/terapia , Errores Diagnósticos , Femenino , Humanos , Hiperandrogenismo/sangre , Hiperandrogenismo/diagnóstico , Hiperandrogenismo/cirugía , Inmunoensayo , Fallo Renal Crónico/etiología , Valor Predictivo de las Pruebas , Testosterona/sangre
17.
Cell Death Dis ; 11(11): 963, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173027

RESUMEN

Mutations in the PARK2 gene encoding the protein parkin cause autosomal recessive juvenile Parkinsonism (ARJP), a neurodegenerative disease characterized by dysfunction and death of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Since a neuroprotective therapy for ARJP does not exist, research efforts aimed at discovering targets for neuroprotection are critically needed. A previous study demonstrated that loss of parkin function or expression of parkin mutants associated with ARJP causes an accumulation of glutamate kainate receptors (KARs) in human brain tissues and an increase of KAR-mediated currents in neurons in vitro. Based on the hypothesis that such KAR hyperactivation may contribute to the death of nigral DA neurons, we investigated the effect of KAR antagonism on the DA neuron dysfunction and death that occur in the parkinQ311X mouse, a model of human parkin-induced toxicity. We found that early accumulation of KARs occurs in the DA neurons of the parkinQ311X mouse, and that chronic administration of the KAR antagonist UBP310 prevents DA neuron loss. This neuroprotective effect is associated with the rescue of the abnormal firing rate of nigral DA neurons and downregulation of GluK2, the key KAR subunit. This study provides novel evidence of a causal role of glutamate KARs in the DA neuron dysfunction and loss occurring in a mouse model of human parkin-induced toxicity. Our results support KAR as a potential target in the development of neuroprotective therapy for ARJP.


Asunto(s)
Alanina/análogos & derivados , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Receptores de Ácido Kaínico/antagonistas & inhibidores , Timina/análogos & derivados , Alanina/farmacología , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Receptores de Ácido Kaínico/metabolismo , Timina/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor de Ácido Kaínico GluK2
18.
Front Neurosci ; 13: 1352, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920513

RESUMEN

Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson's disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson's disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson's disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson's disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson's disease is clinically and neuropathologically similar to idiopathic Parkinson's disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson's disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.

19.
Environ Res ; 151: 478-492, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27567352

RESUMEN

Chemicals may persist in the environment, bioaccumulate and be toxic for humans and wildlife, posing great concern. These three properties, persistence (P), bioaccumulation (B), and toxicity (T) are the key targets of the PBT-hazard assessment. The European regulation for the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) requires assessment of PBT-properties for all chemicals that are produced or imported in Europe in amounts exceeding 10 tonnes per year, checking whether the criteria set out in REACH Annex XIII are met, so the substance should therefore be considered to have properties of very high concern. Considering how many substances can fall under the REACH regulation, there is a pressing need for new strategies to identify and screen large numbers fast and inexpensively. An efficient non-testing screening approach to identify PBT candidates is necessary, as a valuable alternative to money- and time-consuming laboratory tests and a good start for prioritization since few tools exist (e.g. the PBT profiler developed by US EPA). The aim of this work was to offer a conceptual scheme for identifying and prioritizing chemicals for further assessment and if appropriate further testing, based on their PBT-potential, using a non-testing screening approach. We integrated in silico models (using existing and developing new ones) in a final algorithm for screening and ranking PBT-potential, which uses experimental and predicted values as well as associated uncertainties. The Multi-Criteria Decision-Making (MCDM) theory was used to integrate the different values. Then we compiled a new set of data containing known PBT and non-PBT substances, in order to check how well our approach clearly differentiated compounds labeled as PBT from those labeled as non-PBT. This indicated that the integrated model distinguished between PBT from non-PBT compounds.


Asunto(s)
Sustancias Peligrosas , Simulación por Computador , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA