Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 608, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105890

RESUMEN

In obesity, signaling through the IRE1 arm of the unfolded protein response exerts both protective and harmful effects. Overexpression of the IRE1-regulated transcription factor XBP1s in liver or fat protects against obesity-linked metabolic deterioration. However, hyperactivation of IRE1 engages regulated IRE1-dependent decay (RIDD) and TRAF2/JNK pro-inflammatory signaling, which accelerate metabolic dysfunction. These pathologic IRE1-regulated processes have hindered efforts to pharmacologically harness the protective benefits of IRE1/XBP1s signaling in obesity-linked conditions. Here, we report the effects of a XBP1s-selective pharmacological IRE1 activator, IXA4, in diet-induced obese (DIO) mice. IXA4 transiently activates protective IRE1/XBP1s signaling in liver without inducing RIDD or TRAF2/JNK signaling. IXA4 treatment improves systemic glucose metabolism and liver insulin action through IRE1-dependent remodeling of the hepatic transcriptome that reduces glucose production and steatosis. IXA4-stimulated IRE1 activation also enhances pancreatic function. Our findings indicate that systemic, transient activation of IRE1/XBP1s signaling engenders multi-tissue benefits that integrate to mitigate obesity-driven metabolic dysfunction.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/farmacología , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Homeostasis , Hígado/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Obesos , Medicina Molecular , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética
2.
Nature ; 576(7785): 138-142, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31748741

RESUMEN

Haem is an essential prosthetic group of numerous proteins and a central signalling molecule in many physiologic processes1,2. The chemical reactivity of haem means that a network of intracellular chaperone proteins is required to avert the cytotoxic effects of free haem, but the constituents of such trafficking pathways are unknown3,4. Haem synthesis is completed in mitochondria, with ferrochelatase adding iron to protoporphyrin IX. How this vital but highly reactive metabolite is delivered from mitochondria to haemoproteins throughout the cell remains poorly defined3,4. Here we show that progesterone receptor membrane component 2 (PGRMC2) is required for delivery of labile, or signalling haem, to the nucleus. Deletion of PGMRC2 in brown fat, which has a high demand for haem, reduced labile haem in the nucleus and increased stability of the haem-responsive transcriptional repressors Rev-Erbα and BACH1. Ensuing alterations in gene expression caused severe mitochondrial defects that rendered adipose-specific PGRMC2-null mice unable to activate adaptive thermogenesis and prone to greater metabolic deterioration when fed a high-fat diet. By contrast, obese-diabetic mice treated with a small-molecule PGRMC2 activator showed substantial improvement of diabetic features. These studies uncover a role for PGRMC2 in intracellular haem transport, reveal the influence of adipose tissue haem dynamics on physiology and suggest that modulation of PGRMC2 may revert obesity-linked defects in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animales , Homeostasis , Humanos , Espacio Intracelular/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Progesterona/deficiencia , Receptores de Progesterona/genética , Transcripción Genética
3.
Cell Rep ; 25(10): 2904-2918.e8, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30517875

RESUMEN

Pancreatic ß cell physiology changes substantially throughout life, yet the mechanisms that drive these changes are poorly understood. Here, we performed comprehensive in vivo quantitative proteomic profiling of pancreatic islets from juvenile and 1-year-old mice. The analysis revealed striking differences in abundance of enzymes controlling glucose metabolism. We show that these changes in protein abundance are associated with higher activities of glucose metabolic enzymes involved in coupling factor generation as well as increased activity of the coupling factor-dependent amplifying pathway of insulin secretion. Nutrient tracing and targeted metabolomics demonstrated accelerated accumulation of glucose-derived metabolites and coupling factors in islets from 1-year-old mice, indicating that age-related changes in glucose metabolism contribute to improved glucose-stimulated insulin secretion with age. Together, our study provides an in-depth characterization of age-related changes in the islet proteome and establishes metabolic rewiring as an important mechanism for age-associated changes in ß cell function.


Asunto(s)
Senescencia Celular , Células Secretoras de Insulina/metabolismo , Metabolómica/métodos , Proteómica/métodos , Envejecimiento , Animales , Carbono/metabolismo , Respiración de la Célula/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucosa/farmacología , Secreción de Insulina , Masculino , Ratones Endogámicos C57BL , Proteoma/metabolismo
4.
Mol Metab ; 16: 76-87, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30120064

RESUMEN

OBJECTIVES: Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes. METHODS: KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling. RESULTS: We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone. CONCLUSIONS: Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.


Asunto(s)
Ciclopentanos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Animales , Peso Corporal/efectos de los fármacos , Ciclopentanos/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Humulus/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
iScience ; 2: 221-237, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29888756

RESUMEN

Adrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing adaptive transcriptional changes that expand thermogenic capacity. Here, we show that the estrogen-related receptors alpha and gamma (ERRα, ERRγ) are collectively critical effectors of adrenergically stimulated transcriptional reprogramming of BAT. Mice lacking adipose ERRs (ERRαγAd-/-) have reduced oxidative and thermogenic capacity and rapidly become hypothermic when exposed to cold. ERRαγAd-/- mice treated long term with a ß3-adrenergic agonist fail to expand oxidative or thermogenic capacity and do not increase energy expenditure in response to norepinephrine (NE). Furthermore, ERRαγAd-/- mice fed a high-fat diet do not lose weight or show improved glucose tolerance when dosed with ß3-adrenergic agonists. The molecular basis of these defects is the finding that ERRs mediate the bulk of the transcriptional response to adrenergic stimulation.

6.
J Clin Invest ; 128(4): 1538-1550, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29528335

RESUMEN

Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa.


Asunto(s)
Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Paniculitis/metabolismo , Transducción de Señal , Células 3T3-L1 , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Grasa Intraabdominal/patología , Macrófagos/patología , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/patología , Paniculitis/genética , Paniculitis/patología
7.
FASEB J ; 30(5): 1976-86, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26849960

RESUMEN

Ketone bodies (KBs) are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of KB homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic KB homeostasis, but the regulation of KB metabolism is still enigmatic. In our study in mice with either knockout or overexpression of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α in skeletal muscle, PGC-1α regulated ketolytic gene transcription in muscle. Furthermore, KB homeostasis of these mice was investigated during withholding of food, exercise, and ketogenic diet feeding, and after streptozotocin injection. In response to these ketogenic stimuli, modulation of PGC-1α levels in muscle affected systemic KB homeostasis. Moreover, the data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. In cultured myotubes, the transcription factor estrogen-related receptor-α was a partner of PGC-1α in the regulation of ketolytic gene transcription. These results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity.-Svensson, K., Albert, V., Cardel, B., Salatino, S., Handschin, C. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice.


Asunto(s)
Dieta Cetogénica , Privación de Alimentos , Homeostasis/fisiología , Cuerpos Cetónicos/sangre , Actividad Motora , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Cuerpos Cetónicos/metabolismo , Masculino , Ratones , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
8.
EMBO Mol Med ; 8(3): 232-46, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26772600

RESUMEN

Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon ß-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Glucosa/metabolismo , Glucólisis , Complejos Multiproteicos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Termogénesis , Animales , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones
9.
Biochem Biophys Res Commun ; 464(2): 480-6, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26159924

RESUMEN

Orexigenic agouti-related protein/neuropeptide Y (Agrp/NPY) neurons and an orexigenic pro-opiomelanocortin (POMC) neurons of the hypothalamus regulate feeding behavior and energy homeostasis. An understanding of the molecular signaling pathways that regulate Agrp/NPY and POMC function could lead to novel treatments for metabolic disorders. Target of Rapamycin Complex 1 (TORC1) is a nutrient-activated protein kinase and central controller of growth and metabolism. We therefore investigated the role of mammalian TORC1 (mTORC1) in Agrp neurons. We generated and characterized Agrp neuron-specific raptor knockout (Agrp-raptor KO) mice. Agrp-raptor KO mice displayed reduced, non-circadian expression of Agrp and NPY but normal feeding behavior and energy homeostasis on both normal and high fat diet. Thus, mTORC1 in Agrp neurons controls circadian expression of orexigenic neuropeptides but is dispensable for the regulation of feeding behavior and energy metabolism.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Ritmo Circadiano , Conducta Alimentaria , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Estrés Oxidativo , Proteína Reguladora Asociada a mTOR , Transducción de Señal
11.
J Biol Chem ; 290(26): 16059-76, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25987562

RESUMEN

Resveratrol (RSV) and SRT1720 (SRT) elicit beneficial metabolic effects and are postulated to ameliorate obesity and related metabolic complications. The co-activator, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), has emerged as a major downstream effector responsible for metabolic remodeling of muscle and other metabolic tissues in response to RSV or SRT treatment. However, the requirement of PGC-1α in skeletal muscle for the systemic metabolic effects of these compounds has so far not been demonstrated. Using muscle-specific PGC-1α knock-out mice, we show that PGC-1α is necessary for transcriptional induction of mitochondrial genes in muscle with both RSV and SRT treatment. Surprisingly, the beneficial effects of SRT on glucose homeostasis and of both compounds on energy expenditure occur even in the absence of muscle PGC-1α. Moreover, RSV and SRT treatment elicit differential transcriptional effects on genes involved in lipid metabolism and mitochondrial biogenesis in liver and adipose tissue. These findings indicate that RSV and SRT do not induce analogous metabolic effects in vivo. Our results provide important insights into the mechanism, effects, and organ specificity of the caloric restriction mimetics RSV and SRT. These findings are important for the design of future therapeutic interventions aimed at ameliorating obesity and obesity-related metabolic dysfunction.


Asunto(s)
Tejido Adiposo/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hígado/metabolismo , Músculo Esquelético/metabolismo , Estilbenos/farmacología , Factores de Transcripción/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Metabolismo Energético/efectos de los fármacos , Femenino , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Resveratrol , Factores de Transcripción/genética
12.
Curr Opin Cell Biol ; 33: 55-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25554914

RESUMEN

Mammalian TOR (mTOR) signaling controls growth, metabolism and energy homeostasis in a cell autonomous manner. Recent findings indicate that mTOR signaling in one tissue can also affect other organs thereby affecting whole body metabolism and energy homeostasis in a non-cell autonomous manner. It is thus not surprising that mTOR signaling mediates aging and is often deregulated in metabolic disorders, such as obesity, diabetes and cancer. This review discusses the regulation of cellular and whole body energy metabolism by mTOR, with particular focus on the non-cell autonomous function of mTOR.


Asunto(s)
Metabolismo Energético , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Homeostasis , Humanos , Hipotálamo/enzimología , Hipotálamo/metabolismo , Hígado/enzimología , Hígado/metabolismo , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Nucleótidos/biosíntesis , Biosíntesis de Proteínas
13.
Proc Natl Acad Sci U S A ; 111(32): 11592-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25082895

RESUMEN

The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.


Asunto(s)
Temperatura Corporal/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Actividad Motora/fisiología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/genética , Técnicas de Silenciamiento del Gen , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 33(9): 2105-11, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23868942

RESUMEN

OBJECTIVE: Perivascular adipose tissue (PVAT) wraps blood vessels and modulates vasoreactivity by secretion of vasoactive molecules. Mammalian target of rapamycin complex 2 (mTORC2) has been shown to control inflammation and is expressed in adipose tissue. In this study, we investigated whether adipose-specific deletion of rictor and thereby inactivation of mTORC2 in PVAT may modulate vascular function by increasing inflammation in PVAT. APPROACH AND RESULTS: Rictor, an essential mTORC2 component, was deleted specifically in mouse adipose tissue (rictor(ad-/-)). Phosphorylation of mTORC2 downstream target Akt at Serine 473 was reduced in PVAT from rictor(ad-/-) mice but unaffected in aortic tissue. Ex vivo functional analysis of thoracic aortae revealed increased contractions and impaired dilation in rings with PVAT from rictor(ad-/-) mice. Adipose rictor knockout increased gene expression and protein release of interleukin-6, macrophage inflammatory protein-1α, and tumor necrosis factor-α in PVAT as shown by quantitative real-time polymerase chain reaction and Bioplex analysis for the cytokines in the conditioned media, respectively. Moreover, gene and protein expression of inducible nitric oxide synthase was upregulated without affecting macrophage infiltration in PVAT from rictor(ad-/-) mice. Inhibition of inducible nitric oxide synthase normalized vascular reactivity in aortic rings from rictor(ad-/-) mice with no effect in rictor(fl/fl) mice. Interestingly, in perivascular and epididymal adipose depots, high-fat diet feeding induced downregulation of rictor gene expression. CONCLUSIONS: Here, we identify mTORC2 as a critical regulator of PVAT-directed protection of normal vascular tone. Modulation of mTORC2 activity in adipose tissue may be a potential therapeutic approach for inflammation-related vascular damage.


Asunto(s)
Tejido Adiposo/metabolismo , Aorta Torácica/metabolismo , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Vasoconstricción , Vasodilatación , Células 3T3-L1 , Tejido Adiposo/inmunología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/inmunología , Proteínas Portadoras/genética , Quimiocina CCL3/metabolismo , Medios de Cultivo Condicionados/metabolismo , Citocinas/genética , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inflamación/inmunología , Inflamación/fisiopatología , Interleucina-6/metabolismo , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
15.
Curr Opin Genet Dev ; 23(1): 53-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23317514

RESUMEN

The target of rapamycin (TOR) is a highly conserved serine/threonine kinase that is part of two structurally and functionally distinct complexes, TORC1 and TORC2. In multicellular organisms, TOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy. Deregulation of TOR signaling alters whole body metabolism and causes age-related disease. This review describes the most recent advances in TOR signaling with a particular focus on mammalian TOR (mTOR) in metabolic tissues vis-a-vis aging, obesity, type 2 diabetes, and cancer.


Asunto(s)
Envejecimiento/genética , Neoplasias/genética , Serina-Treonina Quinasas TOR/genética , Envejecimiento/metabolismo , Animales , Proliferación Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(51): 20808-13, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143799

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy.


Asunto(s)
Bezafibrato/farmacología , Regulación de la Expresión Génica , Enfermedades Musculares/metabolismo , Proteínas/metabolismo , Animales , Glucógeno/química , Glucógeno/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Modelos Genéticos , Complejos Multiproteicos , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Serina-Treonina Quinasas TOR , Transactivadores/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...