Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 19(5): 1436-1466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424188

RESUMEN

Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and spatial analysis is necessary. Here we describe a practical and annotation-efficient pipeline for organelle-specific segmentation, spatial analysis and visualization of large volume electron microscopy datasets using freely available, user-friendly software tools that can be run on a single standard workstation. The procedures are aimed at researchers in the life sciences with modest computational expertise, who use volume electron microscopy and need to generate three-dimensional (3D) segmentation labels for different types of cell organelles while minimizing manual annotation efforts, to analyze the spatial interactions between organelle instances and to visualize the 3D segmentation results. We provide detailed guidelines for choosing well-suited segmentation tools for specific cell organelles, and to bridge compatibility issues between freely available open-source tools, we distribute the critical steps as easily installable Album solutions for deep learning segmentation, spatial analysis and 3D rendering. Our detailed description can serve as a reference for similar projects requiring particular strategies for single- or multiple-organelle analysis, which can be achieved with computational resources commonly available to single-user setups.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica , Programas Informáticos , Microscopía Electrónica/métodos , Imagenología Tridimensional/métodos , Orgánulos/ultraestructura , Análisis Espacial , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Microscopía Electrónica de Volumen
2.
EMBO Mol Med ; 15(11): e18144, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37791581

RESUMEN

Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Glioblastoma/patología , Pez Cebra , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/uso terapéutico , Línea Celular Tumoral , Macrófagos/metabolismo , Neoplasias Encefálicas/patología , Microambiente Tumoral/genética
3.
Epilepsia ; 64(5): 1390-1402, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36808593

RESUMEN

OBJECTIVE: Initiation and development of early seizures by chemical stimuli is associated with brain cell swelling resulting in edema of seizure-vulnerable brain regions. We previously reported that pretreatment with a nonconvulsive dose of glutamine (Gln) synthetase inhibitor methionine sulfoximine (MSO) mitigates the intensity of initial pilocarpine (Pilo)-induced seizures in juvenile rats. We hypothesized that MSO exerts its protective effect by preventing the seizure-initiating and seizure-propagating increase of cell volume. Taurine (Tau) is an osmosensitive amino acid, whose release reflects increased cell volume. Therefore, we tested whether the poststimulus rise of amplitude of Pilo-induced electrographic seizures and their attenuation by MSO are correlated with the release of Tau from seizure-affected hippocampus. METHODS: Lithium-pretreated animals were administered MSO (75 mg/kg ip) 2.5 h before the induction of convulsions by Pilo (40 mg/kg ip). Electroencephalographic (EEG) power was analyzed during 60 min post-Pilo, at 5-min intervals. Extracellular accumulation of Tau (eTau) served as a marker of cell swelling. eTau, extracellular Gln (eGln), and extracellular glutamate (eGlu) were assayed in the microdialysates of the ventral hippocampal CA1 region collected at 15-min intervals during the whole 3.5-h observation period. RESULTS: The first EEG signal became apparent at ~10 min post-Pilo. The EEG amplitude across most frequency bands peaked at ~40 min post-Pilo, and showed strong (r ~ .72-.96) temporal correlation with eTau, but no correlation with eGln or eGlu. MSO pretreatment delayed the first EEG signal in Pilo-treated rats by ~10 min, and depressed the EEG amplitude across most frequency bands, to values that remained strongly correlated with eTau (r > .92) and moderately correlated (r ~ -.59) with eGln, but not with eGlu. SIGNIFICANCE: Strong correlation between attenuation of Pilo-induced seizures and Tau release indicates that the beneficial effect of MSO is due to the prevention of cell volume increase concurrent with the onset of seizures.


Asunto(s)
Metionina Sulfoximina , Pilocarpina , Ratas , Animales , Pilocarpina/toxicidad , Metionina Sulfoximina/farmacología , Metionina Sulfoximina/metabolismo , Taurina/farmacología , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Convulsiones/tratamiento farmacológico , Hipocampo/metabolismo
4.
Front Neurosci ; 16: 874750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733937

RESUMEN

Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the "Trojan Horse" hypothesis.

5.
Sci Rep ; 11(1): 24447, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34961762

RESUMEN

Convolutional neural networks (CNNs)-as a type of deep learning-have been specifically designed for highly heterogeneous data, such as natural images. Neuroimaging data, however, is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. To harness spatial homogeneity of neuroimaging data, we suggest here a new CNN architecture that combines the idea of hierarchical abstraction in CNNs with a prior on the spatial homogeneity of neuroimaging data. Whereas early layers are trained globally using standard convolutional layers, we introduce patch individual filters (PIF) for higher, more abstract layers. By learning filters in individual latent space patches without sharing weights, PIF layers can learn abstract features faster and specific to regions. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer's disease detection on ADNI data and multiple sclerosis detection on private hospital data, and compared it with two baseline models, a standard CNN and a patch-based CNN. We obtained two main results: First, CNNs using PIF layers converge consistently faster, measured in run time in seconds and number of iterations than both baseline models. Second, both the standard CNN and the PIF model outperformed the patch-based CNN in terms of balanced accuracy and receiver operating characteristic area under the curve (ROC AUC) with a maximal balanced accuracy (ROC AUC) of 94.21% (99.10%) for the sex classification task (PIF model), and 81.24% and 80.48% (88.89% and 87.35%) respectively for the Alzheimer's disease and multiple sclerosis detection tasks (standard CNN model). In conclusion, we demonstrated that CNNs using PIF layers result in faster convergence while obtaining the same predictive performance as a standard CNN. To the best of our knowledge, this is the first study that introduces a prior in form of an inductive bias to harness spatial homogeneity of neuroimaging data.

6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681786

RESUMEN

Initial seizures observed in young rats during the 60 min after administration of pilocarpine (Pilo) were delayed and attenuated by pretreatment with a non-convulsive dose of methionine sulfoximine (MSO). We hypothesized that the effect of MSO results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-injected either together with Pilo (short period) or 15 min before sacrifice (long period). Their conversion to Glu and Gln in the hippocampus and entorhinal cortex was followed using [13C] gas chromatography-mass spectrometry. Release of in vitro loaded Glu surrogate, [3H]d-Asp from ex vivo brain slices was monitored in continuously collected superfusates. [3H]d-Asp uptake was tested in freshly isolated brain slices. At no time point nor brain region did MSO modify incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high potassium-induced [3H]d-Asp release, but did not affect [3H]d-Asp uptake. The results indicate that MSO at a non-convulsive dose delays the initial Pilo-induced seizures by interfering with synaptic Glu-release but not with neurotransmitter Glu recycling.


Asunto(s)
Encéfalo/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Metionina Sulfoximina/farmacología , Convulsiones , Animales , Encéfalo/metabolismo , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Litio/efectos adversos , Masculino , Metionina Sulfoximina/administración & dosificación , Pilocarpina/efectos adversos , Ratas , Ratas Sprague-Dawley , Vías Secretoras/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/patología
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681893

RESUMEN

Ammonia toxicity in the brain primarily affects astrocytes via a mechanism in which oxidative stress (OS), is coupled to the imbalance between glutamatergic and GABAergic transmission. Ammonia also downregulates the astrocytic N system transporter SN1 that controls glutamine supply from astrocytes to neurons for the replenishment of both neurotransmitters. Here, we tested the hypothesis that activation of Nrf2 is the process that links ammonia-induced OS formation in astrocytes to downregulation and inactivation of SN1 and that it may involve the formation of a complex between Nrf2 and Sp1. Treatment of cultured cortical mouse astrocytes with ammonia (5 mM NH4Cl for 24 h) evoked Nrf2 nuclear translocation, increased its activity in a p38 MAPK pathway-dependent manner, and enhanced Nrf2 binding to Slc38a3 promoter. Nrf2 silencing increased SN1 mRNA and protein level without influencing astrocytic [3H]glutamine transport. Ammonia decreased SN1 expression in Nrf2 siRNA treated astrocytes and reduced [3H]glutamine uptake. In addition, while Nrf2 formed a complex with Sp1 in ammonia-treated astrocytes less efficiently than in control cells, treatment of astrocytes with hybrid-mode inactivated Sp1-Nrf2 complex (Nrf2 silencing + pharmacological inhibition of Sp1) did not affect SN1 protein level in ammonia-treated astrocytes. In summary, the results document that SN1 transporter dysregulation by ammonia in astrocytes involves activation of Nrf2 but does not require the formation of the Sp1-Nrf2 complex.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Amoníaco/toxicidad , Astrocitos/patología , Corteza Cerebral/patología , Regulación de la Expresión Génica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor de Transcripción Sp1/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor de Transcripción Sp1/genética
8.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575901

RESUMEN

The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.


Asunto(s)
Anticonvulsivantes/farmacología , Biomarcadores , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Epilepsia/etiología , Epilepsia/metabolismo , Animales , Anticonvulsivantes/química , Antioxidantes/administración & dosificación , Terapia Combinada , Suplementos Dietéticos , Descubrimiento de Drogas/métodos , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Humanos , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/metabolismo
9.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206365

RESUMEN

Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.


Asunto(s)
Biopterinas/análogos & derivados , Corteza Cerebral/enzimología , Encefalopatía Hepática/enzimología , Fallo Hepático Agudo/enzimología , Óxido Nítrico Sintasa de Tipo III/genética , Animales , Arginina/metabolismo , Biopterinas/análisis , Biopterinas/metabolismo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Circulación Cerebrovascular , Regulación de la Expresión Génica , Encefalopatía Hepática/etiología , Encefalopatía Hepática/genética , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/complicaciones , Fallo Hepático Agudo/genética , Masculino , Ratas , Ratas Sprague-Dawley , Tioacetamida/toxicidad
10.
FASEB J ; 35(7): e21588, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34169573

RESUMEN

Ammonia is considered the main pathogenic toxin in hepatic encephalopathy (HE). However, the molecular mechanisms involved have been disputed. As altered glutamatergic and GABAergic neurotransmission has been reported in HE, we investigated whether four members of the solute carrier 38 (Slc38) family of amino acid transporters-involved in the replenishment of glutamate and GABA-contribute to ammonia neurotoxicity in HE. We show that ammonium ion exerts multiple actions on the Slc38 transporters: It competes with glutamine for the binding to the system N transporters Slc38a3 and Slc38a5, consequently inhibiting bidirectional astroglial glutamine transport. It also competes with H+ , Na+ , and K+ for uncoupled permeation through the same transporters, which may perturb astroglial intracellular pH, membrane potential, and K+ -buffering. Knockdown of Slc38a3 in mice results in cerebral cortical edema and disrupted neurotransmitter synthesis mimicking events contributing to HE development. Finally, in a mouse model of acute liver failure (ALF), we demonstrate the downregulation of Slc38a3 protein, impeded astroglial glutamine release, and cytotoxic edema. Altogether, we demonstrate contribution of Slc38 transporters to the ammonia-induced impairment of glutamine recycling between astrocytes and neurons, a phenomenon underlying acute ammonia neurotoxicity in the setting of ALF.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Amoníaco/toxicidad , Astrocitos/patología , Edema Encefálico/etiología , Corteza Cerebral/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/complicaciones , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Azoximetano/toxicidad , Edema Encefálico/metabolismo , Edema Encefálico/patología , Corteza Cerebral/metabolismo , Femenino , Glutamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transmisión Sináptica , Xenopus laevis
11.
Adv Med Sci ; 66(1): 199-205, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33711670

RESUMEN

Nitric oxide (NO) and polyamines: putrescine, spermidine and spermine, are key arginine metabolites in mammalian tissues that play critical roles i.a. in regulation of vascular tone (NO), and cell cycle regulation (polyamines). In the brain, both classes of molecules additionally have neuromodulatory and neuroprotective potential, and NO also a neurotoxic potential. Here we review evidence that brain tumors use the NO- and polyamine-synthesizing machineries to the benefit of their differentiation and growth from healthy glia and neurons. With a few exceptions, brain tumors show increased activities of one or all of the three arginine (Arg) to NO-converting nitric oxide synthase (NOS) isoforms (iNOS, eNOS, nNOS), but also elevated activities of polyamines-generating and modifying enzymes: arginase I/II, ornithine decarboxylase and spermidine/spermine N1-acetyltransferase. The degree of stimulation of NO- and polyamine synthesis often correlates with brain tumor malignancy. Excess NO, but also spermine, spermidine and their N1-acetylated forms, are tumor- and context-dependently involved in angiogenesis, tumor initiation and growth, and resistance to chemo- or radiotherapy. Hypothetically, increased demand for NO and/or polyamines is likely to contribute to Arg auxotrophy of malignant brain tumors, albeit the causal nexus awaits experimental verification.


Asunto(s)
Arginina/deficiencia , Neoplasias Encefálicas/patología , Óxido Nítrico/metabolismo , Poliaminas/metabolismo , Animales , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Humanos
12.
Brain Res ; 1753: 147253, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33422530

RESUMEN

The contribution of glutamatergic transmission to generation of initial convulsive seizures (CS) is debated. We tested whether pretreatment with a glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), affects the onset and progression of initial CS by cholinergic stimulus in juvenile rats. Male rats (24 days old, Sprague Dawley) sequentially received i.p. injections of lithium-carbonate, MSO, methyl-scopolamine, and pilocarpine (Pilo). Pilo was given 150 min after MSO. Animals were continuously monitored using the Racine scale, EEG/EMG and intrahippocampal glutamate (Glu) biosensors. GS activity as measured in hippocampal homogenates, was not altered by MSO at 150 min, showed initial, varied inhibition at 165 (15 min post-Pilo), and dropped down to 11% of control at 60 min post-Pilo, whereas GS protein expression remained unaltered throughout. Pilo did neither modulate the effect of MSO on GS activity nor affect GS activity itself, at any time point. MSO reduced from 32% to 4% the number of animals showing CS during the first 12 min post-Pilo, delayed by ~6 min the appearance of electrographic seizures, and tended to decrease EMG power during ~15 min post-Pilo. The results indicate that MSO impairs an aspect of glutamatergic transmission involved in the transition from the first cholinergic stimulus to the onset of seizures. A continuous rise of extracellular Glu lasting 60 min was insignificantly affected by MSO, leaving the nature of the Glu pool(s) involved in altered glutamatergic transmission undefined.


Asunto(s)
Encéfalo/efectos de los fármacos , Glutamato-Amoníaco Ligasa/efectos de los fármacos , Pilocarpina/farmacología , Convulsiones , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glutamina/metabolismo , Masculino , Metionina Sulfoximina/farmacología , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
13.
Nat Biotechnol ; 39(6): 705-716, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33361824

RESUMEN

In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Quimiocina CCL3/genética , Quimiocina CCL4/genética , Hipertensión/tratamiento farmacológico , Receptores CCR1/genética , Adulto , Antagonistas de Receptores de Angiotensina/administración & dosificación , Antagonistas de Receptores de Angiotensina/efectos adversos , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , COVID-19/complicaciones , COVID-19/genética , COVID-19/virología , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipertensión/complicaciones , Hipertensión/genética , Hipertensión/patología , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/virología , Masculino , Persona de Mediana Edad , RNA-Seq , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Factores de Riesgo , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual
14.
Cell Calcium ; 92: 102304, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065384

RESUMEN

Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Astrocitos/efectos de los fármacos , Cafeína/farmacología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo
15.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092050

RESUMEN

Acute liver failure (ALF) leads to neurological symptoms defined as hepatic encephalopathy (HE). Although accumulation of ammonia and neuroinflammation are generally accepted as main contributors to HE pathomechanism, a buildup of bile acids (BA) in the blood is a frequent component of liver injury in HE patients. Recent studies have identified the nuclear farnesoid X receptor (FXR) acting via small heterodimer partner (SHP) as a mediator of BA-induced effects in the brain of ALF animals. The present study investigated the status of the BA-FXR axis in the brain and the liver, including selective changes in pertinent genes in thioacetamide (TAA)-induced ALF in Sprague-Dawley rats. FXR was found in rat neurons, confirming earlier reports for mouse and human brain. BA accumulated in blood but not in the brain tissue. Expression of mRNAs coding for Fxr and Shp was reduced in the hippocampus and of Fxr mRNA also in the cerebellum. Changes in Fxr mRNA levels were not followed by changes in FXR protein. The results leave open the possibility that mobilization of the BA-FXR axis in the brain may not be necessarily pathognomonic to HE but may depend upon ALF-related confounding factors.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Encéfalo/metabolismo , Fallo Hepático Agudo/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Encéfalo/citología , Células Cultivadas , Expresión Génica , Humanos , Hígado/patología , Fallo Hepático Agudo/inducido químicamente , Masculino , Neuronas/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/genética , Tioacetamida
17.
Cytokine ; 123: 154774, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344597

RESUMEN

Glutamate related excitotoxicity and excess of cerebral levels of tumor necrosis factor alpha (TNFα) are interrelated and well documented abnormalities noticed in many central nervous system diseases. Contribution of kidney type glutaminase (KGA) and shorter alternative splicing form (GAC) to glutamine degradation in astrocytes has been recently a matter of dispute and extensive study but the regulation of the GLS isoforms by inflammatory factors is still not well known. Here we show that treatment of cultured rat cortical astrocytes with pathophysiologically relevant (50 ng/ml) concentration of TNFα specifically increases the expression of KGA but not GAC and increases activity of GLS. No changes in the expression of either of two GLS isoforms were observed following treatment with other tested cytokines IL-1ß and IL-6. The TNFα mediated KGA expression was associated with increased phosphorylation of signal transducer and activator of transcription 3 (STAT3). Stimulatory effect of TNF-α on KGA expression was reduced by selective inhibition of (STAT3) but not by inhibition of STAT1 nor nuclear transcription factor kappa. Additionally, the role of miRNA in TNFα-induced expression of KGA in astrocytes was excluded, since the expression of miR-23a/b and miR-200c, potential regulators of KGA expression, was unchanged. This study documents increased KGA expression in the astrocytes under inflammatory stimulation, identifying TNFα as a cytokine mediating this response, and demonstrates the specific and selective involvement of STAT3.


Asunto(s)
Astrocitos/inmunología , Regulación Enzimológica de la Expresión Génica/inmunología , Glutaminasa/inmunología , Factor de Transcripción STAT3/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Astrocitos/citología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Isoenzimas/inmunología , Ratas , Ratas Wistar
18.
Neuropharmacology ; 161: 107560, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30853601

RESUMEN

CNS cell membranes possess four transporters capable of exchanging Lglutamine (Gln) for other amino acids: the large neutral amino acid (LNAA) transporters LAT1 and LAT2, the hybrid basic amino acid (L-arginine (Arg), L-leucine (Leu)/LNAA transporter y+LAT2, and the L-alanine/L-serine/L-cysteine transporter 2 (ASCT2). LAT1/LAT2 and y+LAT2 are present in astrocytes, neurons and the blood brain barrier (BBB) - forming cerebral vascular endothelial cells (CVEC), while the location of ASCT2 in the individual cell types is a matter of debate. In the healthy brain, contribution of the exchangers to Gln shuttling from astrocytes to neurons and thus their role in controlling the conversion of Gln to the amino acid neurotransmitters l-glutamate (Glu) and γ-aminobutyric acid (GABA) and Gln flux across the BBB appears negligible as compared to the system A and system N uniporters. Insofar, except for the contribution of LAT1 to the maintenance of Gln homeostasis in the interstitial fluid (ISF), no well-defined CNS-specific function has been established for either of the three transporters in the healthy brain. The Gln-accepting amino acid exchangers appear to gain significance under conditions of excessive brain Gln load (glutaminosis). Excess Gln efflux across the BBB enhances influx into the brain of L-tryptophan (Trp). Excess of Trp is responsible for overloading the brain with neuroactive compounds: serotonin, kynurenic acid, quinolinic acid and/or oxindole, which contribute to neurotransmission imbalance accompanying hyperammonemia. In turn, alterations of y+LAT2-mediated Gln/Arg exchange and Arg uptake in astrocyte, modulate astrocytic nitric oxide synthesis and oxidative/nitrosative stress in ammonia-overexposed brain. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Membrana Celular/metabolismo , Sistema Nervioso Central/metabolismo , Glutamina/metabolismo , Neuronas/metabolismo , Animales , Transporte Biológico Activo/fisiología , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/citología , Humanos , Transporte Iónico/fisiología
19.
Cancers (Basel) ; 11(1)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669455

RESUMEN

GLS-encoded glutaminase promotes tumorigenesis, while GLS2-encoded glutaminase displays tumor-suppressive properties. In glioblastoma (GBM), the most aggressive brain tumor, GLS is highly expressed and in most cases GLS2 is silenced. Previously, it was shown that transfection with a sequence encoding GAB, the main GLS2 isoform, decreased the survival, growth, and ability to migrate of human GBM cells T98G and increased their sensitivity towards an alkylating agent temozolomide (TMZ) and oxidative stress compared to the controls, by a not well-defined mechanism. In this study we report that GAB transfection inhibits growth and increases susceptibility towards TMZ and H2O2-mediated oxidative stress of two other GBM cell lines, U87MG and LN229. We also show that in GAB-transfected cells treated with H2O2, the PI3K/AKT pathway is less induced compared to the pcDNA-transfected counterparts and that pretreatment with PDGF-BB, an activator of AKT, protects GAB-transfected cells from death caused by the H2O2 treatment. In conclusion, our results show that (i) GAB suppresses the malignant phenotype of the GBM cells of different tumorigenic potentials and genetic backgrounds and (ii) the GAB-mediated increase of sensitivity to oxidative stress is causally related to the inhibition of the PI3K/AKT pathway. The upregulation of the GLS2 expression and the inhibition of the PI3K/AKT pathway may become a novel combined therapeutic strategy for anti-glioma preclinical investigations.

20.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646531

RESUMEN

Studies of the last two decades have demonstrated the presence in astrocytic cell membranes of N-methyl-d-aspartate (NMDA) receptors (NMDARs), albeit their apparently low abundance makes demonstration of their presence and function more difficult than of other glutamate (Glu) receptor classes residing in astrocytes. Activation of astrocytic NMDARs directly in brain slices and in acutely isolated or cultured astrocytes evokes intracellular calcium increase, by mutually unexclusive ionotropic and metabotropic mechanisms. However, other than one report on the contribution of astrocyte-located NMDARs to astrocyte-dependent modulation of presynaptic strength in the hippocampus, there is no sound evidence for the significant role of astrocytic NMDARs in astrocytic-neuronal interaction in neurotransmission, as yet. Durable exposure of astrocytic and neuronal co-cultures to NMDA has been reported to upregulate astrocytic synthesis of glutathione, and in this way to increase the antioxidative capacity of neurons. On the other hand, overexposure to NMDA decreases, by an as yet unknown mechanism, the ability of cultured astrocytes to express glutamine synthetase (GS), aquaporin-4 (AQP4), and the inward rectifying potassium channel Kir4.1, the three astroglia-specific proteins critical for homeostatic function of astrocytes. The beneficial or detrimental effects of astrocytic NMDAR stimulation revealed in the in vitro studies remain to be proven in the in vivo setting.


Asunto(s)
Astrocitos/metabolismo , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Acuaporina 4/genética , Glutamato-Amoníaco Ligasa/genética , Hipocampo/metabolismo , Humanos , N-Metilaspartato/genética , Canales de Potasio de Rectificación Interna/genética , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...