RESUMEN
Organic luminescent radicals are a new class of materials with potential applications not only in light-emitting devices but also in the biochemistry field. New tris(2,4,6-trichlorophenyl)methyl (TTM) radicals with alkoxy-substituted carbazole donors were synthesized and characterized. PEG-substituted carbazole-TTM was found to be water-soluble. The water-soluble TTM radical aqueous solution showed fluorescence at 777 nm and the ability to shorten the longitudinal relaxation time (T1) of water. The concept of water-soluble luminescent radicals is expected to be used to develop a potential fluorescence and MR dual-use imaging moiety.
Asunto(s)
Carbazoles , Solubilidad , Agua , Carbazoles/química , Carbazoles/síntesis química , Agua/química , Radicales Libres/química , Luminiscencia , Estructura Molecular , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis químicaRESUMEN
A series of halogen-substitute carbazole TTM radicals was synthesized. The effect of halogen substituents on radical luminescence was systematically evaluated. It was found that the well-known heavy atom effect does not work in the emission of radicals and that halogen substitution of the donor carbazole can change the HOMO and alter the absorption and emission wavelengths. In addition, the photostability was found to be improved with respect to TTM but not significantly different from that of closed-shell fluorescent molecules.
RESUMEN
A series of carbazole-dendronized tris(2,4,6-trichlorophenyl)methyl (TTM) radicals have been synthesized. The photophysical properties of dendronized radicals up to the fourth generation were compared systematically to understand how structure-property relationships evolve with generation. The photoluminescence quantum yield (PLQY) was found to increase with the increasing generation, and the fourth generation (G4TTM) in cyclohexane solution showed a PLQY as high as 63 % at a wavelength of 627â nm (in the deep-red region) from the doublet state. The dendron modification strategy also showed a blue-shift of the emission on increasing the generation number, and the photostability was also increased compared to the bare TTM radical.
RESUMEN
Four types of carbazole dendrimers were applied as modification molecules of Au surfaces to improve carbon dioxide electroreduction. The reduction properties depended on the molecular structures: the highest activity and selectivity to CO was achieved by 9-phenylcarbazole, probably caused by the charge transfer from the molecule to Au.
RESUMEN
Stable organic luminescent radicals have attracted much attention, but their stability under light irradiation is not yet satisfactory. New luminescent radicals (TTMs) based on terminal benzene ring modified carbazole donors were synthesized and evaluated. Their photostability (half-life under continuous laser irradiation) has improved by 1 order of magnitude compared to simple carbazole donors. This is a new molecular design strategy to improve the photostability of luminescent radicals without reducing other photophysical properties.
RESUMEN
Synthesizing metal clusters with a specific number of atoms on a preparative scale for studying advanced properties is still a challenge. The dendrimer templated method is powerful for synthesizing size or atomicity controlled nanoparticles. However, not all atomicity is accessible with conventional dendrimers. A new tailor-made phenylazomethine dendrimer (DPA) with a limited number of coordination sites (n = 16) and a non-coordinating large poly-phenylene shell was designed to tackle this problem. The asymmetric dendron and adamantane core four substituted dendrimer (PPDPA16) were successfully synthesized. The coordination behavior confirmed the accumulation of 16 metal Lewis acids (RhCl3, RuCl3, and SnBr2) to PPDPA16. After the reduction of the complex, low valent metal nanoparticles with controlled size were obtained. The tailor-made dendrimer is a promising approach to synthesize a variety of metal clusters with desired atomicity.
RESUMEN
A carbonophosphate compound of Li2.72Na0.31MnPO4CO3 was synthesized via ion exchange. The initial discharge capacity of Li2.72Na0.31MnPO4CO3 in 15 molal (or 15 m) LiTFSI was 110 mA h g-1 at 2 mA cm-2 (â¼0.5C). Due to the decomposition of Li2.72Na0.31MnPO4CO3, the capacity retention degraded to 64% after 100 cycles.
RESUMEN
Microscopic observation of single molecules is a rapidly expanding field in chemistry and differs from conventional characterization techniques that require a large number of molecules. One of such form of single-molecule microscopy is high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which is especially suitable for coordination compounds because of its atomic number-dependent contrast. However, to date, single-molecule observations using HAADF-STEM has limited to simple planar molecules. In the present study, we demonstrate a direct structural investigation of nonplanar dendronized polynuclear Ir complexes with subnanometer resolution using Ir as an atomic label. Decreasing the electron dose to the dendrimer complexes is critical for the single-molecule observation. A comparison with simulated STEM images of conformational isomers is performed to determine the most plausible conformation. Our results enlarge the potential of electron microscopic observation to realize structural analysis of coordination macromolecules, which has been impossible with conventional methods.
RESUMEN
Microcrystallites are promising minute mirrorless laser sources. A variety of luminescent organic compounds have been exploited along this line, but dendrimers have been inapplicable owing to their fragility and extremely poor crystallinity. Now, a dendrimer family that overcomes these difficulties is presented. First-, second-, and third-generation carbazole (Cz) dendrimers with a carbon-bridged oligo(phenylenevinylene) (COPV2) core (GnCOPV2, n=1-3) assemble to form microcrystals. The COPV2 cores align uni/bidirectionally in the crystals while the Cz units in G2- and G3COPV2 align omnidirectionally. The dendrons work as light-harvesting antennas that absorb non-polarized light and transfer it to the COPV2 core, from which a polarized luminescence radiates. Furthermore, these crystals act as laser resonators, where the lasing thresholds are strongly coupled with the crystal morphology and the orientation of COPV2, which is in contrast with the conventional amorphous dendrimers.
RESUMEN
Vapochromic behaviour of porous crystals is beneficial for facile and rapid detection of gaseous molecules without electricity. Toward this end, tailored molecular designs have been established for metal-organic, covalent-bonded and hydrogen-bonded frameworks. Here, we explore the hydrochromic chemistry of a van der Waals (VDW) porous crystal. The VDW porous crystal VPC-1 is formed from a novel aromatic dendrimer having a dibenzophenazine core and multibranched carbazole dendrons. Although the constituent molecules are connected via VDW forces, VPC-1 maintains its structural integrity even after desolvation. VPC-1 exhibits reversible colour changes upon uptake/release of water molecules due to the charge transfer character of the constituent dendrimer. Detailed structural analyses reveal that the outermost carbazole units alone are mobile in the crystal and twist simultaneously in response to water vapour. Thermodynamic analysis suggests that the sigmoidal water sorption is induced by the affinity alternation of the pore surface from hydrophobic to hydrophilic.
RESUMEN
Current-voltage characteristics of single molecule junctions are governed both by the energy level alignment of molecular orbitals with respect to the Fermi level of the electrodes and by the hybridization of electronic structures at the interface between the molecule and the electrodes. While there have been many studies on tuning the former, only a few works intended to control the latter. In the present study, we demonstrate that molecular junctions based on carbazole oligomers showed a current rectification behavior due to asymmetric-symmetric control of electronic hybridization between the molecule and electrodes at the both terminals. The carbazole oligomers originally showed an asymmetric molecular orbital and, hence, electronic hybridization with the electrodes because of the electric dipole moment. Symmetric electronic hybridization was achieved when the applied electric field between electrodes deformed molecular orbital to be symmetric. This is a novel way to control charge transport in single-molecule junctions.
RESUMEN
A series of second-generation carbazole-benzophenone dendrimer substituted by several functional groups at terminal positions (subG2B) was investigated toward a thermally activated delayed fluorescence (TADF) emitter for nondoped emissive layer (EML) application in a solution-processed organic light-emitting diode (OLED). Substitution was found to dramatically alter the photophysical properties of the dendritic TADF emitters. The introduction of tert-butyl and phenyl group endows the subG2Bs with aggregation-induced emission enhancement character by suppression of internal conversion in singlet excited states. In the meantime, the introduction of a methoxy group resulted in aggregation-caused quenching character. The device performance of the OLED, where subG2B neat films were incorporated as nondoped EMLs, was found to be highly enhanced by adopting fully solution-processed organic multilayer architecture in comparison to the devices with a vacuum-deposited electron transporting layer (ETL), achieving a maximum external quantum efficiency of 17.0%. Such improvement was attributable to the improved carrier balance via intermixing at solution-processed EML/ETL interfaces. It was also found that the post-thermal annealing of the OLED at appropriate temperatures could be beneficial to enhance OLED performance by promoting the intermixing EML/ETL interface to some extent. Our findings emphasize the potential utility of dendritic TADF emitters in the solution-processed TADF-OLED and increase the importance to manipulate dendrimer/small molecule interfaces.
RESUMEN
Anisotropic dendrimers with bipolar shapes were systematically obtained using a heteroleptic metal-organic polyhedron (MOP) as a robust core scaffold. The structure of one of these polyhedral shapes was unambiguously determined by single-crystal X-ray analysis, which revealed that the bulky dendrons converge to both axial positions of the heteroleptic MOP core.
RESUMEN
A self-assembled crystalline microporous dendrimer framework (MDF) exhibits novel turn-on and ratiometric fluorescence upon exposure to solvent vapours. The donor-acceptor character, combined with the large surface area (>650 m2 g-1), allows the MDF to discriminate vapours of volatile solvents with turn-on and colour change of photoluminescence.
RESUMEN
New solution processable and laminatable terminally modified carbazole-triazine thermally activated delayed fluorescence (TADF) dendrimers are reported. An OLED device with fully solution processed organic layers exhibited an external quantum efficiency of up to 9.4% at 100 cd m-2.
RESUMEN
Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.
RESUMEN
By the covalent linkage of two bent bisanthracene amphiphiles with a biphenyl spacer bearing hydrophilic pendants, we synthesized a new molecular clip with a C-shaped conformation. The molecular clip provides an acyclic, open cavity surrounded by four anthracene panels in water. In contrast to previous clip- and tweezers-like compounds as well as cage-shaped compounds, the C-shaped polyaromatic cavity displays unusual wide-ranging capturing abilities toward not only planar perylene-based pigments and cylindrical single-walled carbon nanotubes but also highly branched macromolecules (carbazole dendrimers).