Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Biol Chem ; 293(40): 15715-15724, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30135208

RESUMEN

The rhodamine-based probe R19-S has been shown to react with hypochlorous acid (HOCl) to yield fluorescent R19, but not with some other oxidants including hydrogen peroxide. Here, we further examined the specificity of R19-S and used it for real-time monitoring of HOCl production in neutrophil phagosomes. We show that it also reacts rapidly with hypobromous acid, bromamines, and hypoiodous acid, indicating that R19-S responds to these reactive halogen species as well as HOCl. Hypothiocyanous acid and taurine chloramine were unreactive, however, and ammonia chloramine and dichloramine reacted only very slowly. MS analyses revealed additional products from the reaction of HOCl with R19-S, including a chlorinated species as a minor product. Of note, phagocytosis of opsonized zymosan or Staphylococcus aureus by neutrophils was accompanied by an increase in R19 fluorescence. This increase depended on NADPH oxidase and myeloperoxidase activities, and detection of chlorinated R19-S confirmed its specificity for HOCl. Using live-cell imaging to track individual phagosomes in single neutrophils, we observed considerable heterogeneity among the phagosomes in the time from ingestion of a zymosan particle to when fluorescence was first detected, ranging from 1 to >30 min. However, once initiated, the subsequent fluorescence increase was uniform, reaching a similar maximum in ∼10 min. Our results confirm the utility of R19-S for detecting HOCl in real-time and provide definitive evidence that isolated neutrophils produce HOCl in phagosomes. The intriguing variability in the onset of HOCl production among phagosomes identified here could influence the way they kill ingested bacteria.


Asunto(s)
Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Neutrófilos/enzimología , Fagocitosis , Fagosomas/metabolismo , Rodaminas/química , Bioensayo , Colorantes Fluorescentes/metabolismo , Humanos , Ácido Hipocloroso/inmunología , Ácido Hipocloroso/metabolismo , Errores Innatos del Metabolismo/enzimología , Errores Innatos del Metabolismo/inmunología , Errores Innatos del Metabolismo/patología , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Neutrófilos/inmunología , Neutrófilos/patología , Proteínas Opsoninas/química , Peroxidasa/deficiencia , Peroxidasa/genética , Peroxidasa/inmunología , Fagosomas/inmunología , Fagosomas/ultraestructura , Cultivo Primario de Células , Rodaminas/metabolismo , Espectrometría de Fluorescencia , Staphylococcus aureus/inmunología , Zimosan/química
2.
Inorg Chem ; 53(11): 5486-93, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24684580

RESUMEN

The first example of a diboryl corrole complex, [(BF2)2(Br8T(4-F-P)C)](-) (Br8T(4-F-P)C = trianion of 2,3,7,8,12,13,17,18-octabromo-5,10,15-tris(4-fluorophenyl)corrole), has been isolated using the strongly electron-withdrawing and sterically crowded triaryl octabromocorrole ligand. Density functional theory (DFT) calculations show that the hydrolysis reaction producing the partially hydrolyzed complexes [B2OF2(Cor)](-) is more favored for the less sterically crowded triaryl corrole complexes. Monoboryl complexes BF2(H2Cor) (Cor = trianions of 5,10,15-triphenylcorrole (TPC), 5,10,15-tris(4-methylphenyl)corrole (T(4-CH3-P)C), 5,10,15-tris(4-trifluoromethylphenyl)corrole (T(4-CF3-P)C), and 5,10,15-tris(pentafluorophenyl)corrole (TPFPC)) were prepared and characterized. The experimental data are consistent with an out-of-plane dipyrrin coordination mode for these complexes, and DFT optimizations suggest that internal BF···HN hydrogen bonding may be significant in stabilizing these complexes. Further examples of the anionic diboron corrole [B2OF2(Cor)](-) containing the electron-withdrawing 5,10,15-tris(pentafluorophenyl)corrole (TPFPC) and the sterically hindered 10-(4-methoxyphenyl)-5,15-dimesitylcorrole (Mes2(4-MeOP)C) trianions are reported.

3.
Biochim Biophys Acta ; 1840(2): 781-93, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23872351

RESUMEN

BACKGROUND: Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW: We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS: Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE: These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Asunto(s)
Ácido Hipocloroso/análisis , Inflamación/metabolismo , Neutrófilos/metabolismo , Animales , Humanos , Peroxidasa/metabolismo
4.
J Leukoc Biol ; 91(3): 369-76, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22131345

RESUMEN

A variety of inflammatory stimuli induces NETs. These structures consist of a network of chromatin strands associated with predominately granule proteins, including MPO. NETs exhibit antimicrobial activity, which is proposed to augment the more-established mechanism of phagosomal killing. They may also be detrimental to the host in situations such as chronic inflammation or severe sepsis. The objective of this study was to establish whether MPO associated with NETs is active and able to kill bacteria. Neutrophils were stimulated with PMA to release NETs. Peroxidase activity measurements were performed and showed that enzymatically active MPO was released from the neutrophils, 2-4 h after stimulation, concomitant with NET formation. Approximately 30% of the total cellular MPO was released, with the majority bound to the NETs. The bound enzyme retained its activity. Staphylococcus aureus were not killed when added to preformed NETs under our assay conditions. However, addition of H(2)O(2) to the bacteria in the presence of NETs resulted in MPO-dependent killing, which was observed with NETs in situ and with NETs when they were removed from the neutrophils by limited DNase digestion. Our results show that the enzymatic activity of MPO on NETs could contribute to antimicrobial activity or tissue injury when NETs are released from neutrophils at sites of infection or inflammation.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Neutrófilos/enzimología , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Fenómenos Fisiológicos Bacterianos , Activación Enzimática/efectos de los fármacos , Escherichia coli/inmunología , Heparina/farmacología , Humanos , Viabilidad Microbiana , Neutrófilos/inmunología , Staphylococcus aureus/fisiología
5.
Dalton Trans ; 39(17): 4032-4, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20390165

RESUMEN

The reaction of PhBCl(2) with free base triarylcorroles results in a spontaneous reduction to give diboron corrole complexes (PhBHBPh)(Cor) in which a proton has been captured to form a bridging B-H-B group encapsulated within the corrole ligand. The proposed mechanism is supported by the reaction of PhBF(2) with H(3)Cor to give (PhBF)(BPh)(Cor) in which no reduction has occurred.

6.
Dalton Trans ; (33): 4464-73, 2008 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-18698450

RESUMEN

The structures of a number of mono- and diboron corrole complexes have been optimized using DFT methods in order to establish regio- and stereochemical preferences for bonding of one or two boron atoms to the corrole macrocycle. The formulations of the complexes were suggested either from preliminary experimental results (to be reported elsewhere) or by analogy with related diboron porphyrin compounds. The computational results suggest for the monoboron corroles BF(2)(H(2)corrole) and BPhH(H(2)corrole) that the regioisomer in which the boron is bound to a dipyrromethene site adjacent to the bipyrrole is preferred over the other possible regioisomers in which boron coordinates either in the bipyrrole or in the dipyrromethene site opposite the bipyrrole. In the N-substituted corrole complexes there are only two possiblities and, for each complex, the regioisomer with boron in the dipyrromethene site adjacent to the bipyrrole is lower in energy. For all four monoboron complexes the stereoisomers in which boron and both its substituents are displaced out of the mean N(4) plane are more stable than the boron in-plane stereoisomers. These regio- and stereochemical preferences are rationalised by an analysis of the deformations to the corrole macrocycle and the geometry at the boron atoms. The lowest energy structures in all cases correspond to the least strained configurations. In addition, all four complexes show significant BFHN hydrogen bonding and BHHN dihydrogen bonding interactions, which are maximised in the lowest energy configurations for each structure, indicating that these are important additional stabilising interactions. Three different regioisomers, each with cisoid or transoid stereochemistry were optimised for the diboron complex PhBOB(corrole) which contains a bridging BOB group. The dipyrromethene/dipyrromethene isomer is more stable than either of the dipyrromethene/bipyrrole isomers and cisoid stereochemistry is preferred over transoid. This contrasts with porphyrin complexes containing BOB groups for which both stereochemical possibilities are observed, and reflects the contracted size of the corrole macrocycle. Three further diboron corroles were investigated, the diboranyl cation [B(2)(corrole)](+) and its one- and two-electron reduced derivatives B(2)(corrole) and [B(2)(corrole)](-). These calculations were undertaken to determine whether the site of reduction of [B(2)(corrole)](+) is likely to be the diboron moiety or the macrocycle. The B-B bond lengths do not shorten upon reduction and an analysis of the molecular orbitals of each species indicates that reduction will be most likely to occur at the macrocycle, offering a potential route to an example of the two-electron reduced corrole ligand, an analogue of the 20-electron isophlorin ligand observed in the corresponding reduced porphyrin complex B(2)(porphine).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA