Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2310057120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37906643

RESUMEN

During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as Caenorhabditis elegans, proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals. To uncover age-dependent changes in the insoluble portion of a mammalian proteome, we analyzed the detergent-insoluble fraction of mouse brain tissue by mass spectrometry. We identified a group of 171 proteins, including the small heat shock protein α-crystallin, that become enriched in the detergent-insoluble fraction obtained from old mice. To enhance our ability to detect features associated with proteins in that fraction, we complemented our data with a meta-analysis of studies reporting the detergent-insoluble proteins in various mouse models of aging and neurodegeneration. Strikingly, insoluble proteins from young and old mice are distinct in several features in our study and across the collected literature data. In younger mice, proteins are more likely to be disordered, part of membraneless organelles, and involved in RNA binding. These traits become less prominent with age, as an increased number of structured proteins enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a group of proteins with specific features to become detergent-insoluble. Importantly, these features are not consistent with those associated with proteins driving membraneless organelle formation. We see no evidence in our system of a general increase of condensate proteins in the detergent-insoluble fraction with age.


Asunto(s)
Detergentes , Proteoma , Ratones , Animales , Proteoma/metabolismo , Detergentes/metabolismo , Envejecimiento , Caenorhabditis elegans/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
2.
Hum Gene Ther ; 31(9-10): 575-589, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32000541

RESUMEN

Adeno-associated virus (AAV) vectors are quickly becoming the vectors of choice for therapeutic gene delivery. To date, hundreds of natural isolates and bioengineered variants have been reported. While factors such as high production titer and low immunoreactivity are important to consider, the ability to deliver the genetic payload (physical transduction) and to drive high transgene expression (functional transduction) remains the most important feature when selecting AAV variants for clinical applications. Reporter expression assays are the most commonly used methods for determining vector fitness. However, such approaches are time consuming and become impractical when evaluating a large number of variants. Limited access to primary human tissues or challenging model systems further complicates vector testing. To address this problem, convenient high-throughput methods based on next-generation sequencing (NGS) are being developed. To this end, we built an AAV Testing Kit that allows inherent flexibility in regard to number and type of AAV variants included, and is compatible with in vitro, ex vivo, and in vivo applications. The Testing Kit presented here consists of a mix of 30 known AAVs where each variant encodes a CMV-eGFP cassette and a unique barcode in the 3'-untranslated region of the eGFP gene, allowing NGS-barcode analysis at both the DNA and RNA/cDNA levels. To validate the AAV Testing Kit, individually packaged barcoded variants were mixed at an equal ratio and used to transduce cells/tissues of interest. DNA and RNA/cDNA were extracted and subsequently analyzed by NGS to determine the physical/functional transduction efficiencies. We were able to assess the transduction efficiencies of immortalized cells, primary cells, and induced pluripotent stem cells in vitro, as well as in vivo transduction in naïve mice and a xenograft liver model. Importantly, while our data validated previously reported transduction characteristics of individual capsids, we also identified novel previously unknown tropisms for some AAV variants.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Cápside/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , ADN Viral , Femenino , Fibroblastos , Técnicas de Transferencia de Gen , Terapia Genética , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Receptor EphB2 , Linfocitos T , Transducción Genética , Transgenes
3.
J Biol Chem ; 291(45): 23490-23505, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27621312

RESUMEN

Cardiac ryanodine receptor (Ryr2) Ca2+ release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca2+ flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca2+ signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca2+-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca2+ dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.


Asunto(s)
Señalización del Calcio , Glucosa/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Eliminación de Gen , Metaboloma , Ratones , Ratones Endogámicos C57BL , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxidación-Reducción , Proteoma , Piruvatos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética
4.
Biochimie ; 119: 60-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26475175

RESUMEN

CcrM-related DNA-(adenine N6)-methyltransferases play very important roles in the biology of Caulobacter crescentus and other alpha-proteobacteria. These enzymes methylate GANTC sequences, but the molecular mechanism by which they recognize their target sequence is unknown. We carried out multiple sequence alignments and noticed that CcrM enzymes contain a conserved C-terminal domain (CTD) which is not present in other DNA-(adenine N6)-methyltransferases and we show here that deletion of this part abrogates catalytic activity and DNA binding of CcrM. A mutational study identified 7 conserved residues in the CTD (out of 13 tested), mutation of which led to a strong reduction in catalytic activity. All of these mutants showed altered DNA binding, but no change in AdoMet binding and secondary structure. Some mutants exhibited reduced DNA binding, but others showed an enhanced DNA binding. Moreover, we show that CcrM does not specifically bind to DNA containing GANTC sequences. Taken together, these findings suggest that the specific CcrM-DNA complex undergoes a conformational change, which is endergonic but essential for catalytic activity and this step is blocked by some of the mutations. Moreover, our data indicate that the CTD of CcrM is involved in DNA binding and recognition. This suggests that the CTD functions as target recognition domain of CcrM and, therefore, CcrM can be considered the first example of a δ-type DNA-(adenine N6)-methyltransferase identified so far.


Asunto(s)
Proteínas Bacterianas/química , Caulobacter crescentus/enzimología , ADN/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Codón de Terminación , Secuencia Conservada , Metilación de ADN , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Especificidad por Sustrato
5.
J Proteomics ; 118: 21-38, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25451012

RESUMEN

Because misfolded and damaged proteins can form potentially harmful aggregates, all living organisms have evolved a wide variety of quality control mechanisms. However, the timely clearance of aggregation-prone species may not always be achieved, potentially leading to the accumulation of low solubility proteins. At the same time, promiscuity, which can be a driving force for aggregation, is also important to the functionality of certain proteins which have a large number of interaction partners. Considerable efforts have been made towards characterizing why some proteins appear to be more aggregation-prone than others. In this study, we analyze the features of proteins which precipitate following centrifugation in unstressed yeast cells, human SH-SY5Y cells and mouse brain tissue. By normalizing for protein abundance, we devised an approach whereby lower solubility proteins are reliably identified. Our findings indicate that these tend to be longer, low abundance proteins, which contain fewer hydrophobic amino acids. Furthermore, low solubility proteins also contain more low complexity and disordered regions. Overall, we observed an increase in features that link low solubility proteins to functional aggregates. Our results indicate that lower solubility proteins from three biologically distinct model systems share several common traits, shedding light on potentially universal solubility determinants. BIOLOGICAL SIGNIFICANCE: We set up a novel approach to identify lower solubility proteins in unstressed cells by comparing precipitated proteins with those that remain soluble after centrifugation. By analyzing three eukaryotic model systems in parallel, we were able to identify traits which cross the species barrier, as well as species-specific characteristics. Notably, our analyses revealed a number of primary and secondary structural features that set apart lower solubility proteins, a number of which connected them to a greater potential for promiscuity. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Asunto(s)
Agregado de Proteínas , Saccharomyces cerevisiae/metabolismo , Animales , Línea Celular , Humanos , Ratones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Solubilidad
6.
Chembiochem ; 13(9): 1304-11, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22639453

RESUMEN

Caulobacter crescentus CcrM is a DNA-(adenine N6)-methyltransferase that methylates adenine in the sequence GANTC with high specificity. To investigate its mechanism of DNA recognition, we used the crystal structure of a related methyltransferase (M1.MboII, which modifies GAAGA) as a starting point, and docked into it a DNA substrate to identify the protein regions that approach the DNA. After alignment of CcrM and M1.MboII, we identified four candidate regions in CcrM to contain residues involved in DNA recognition. We mutated 20 amino acid residues within these regions, purified the CcrM variants, and determined their DNA-binding and catalytic activity on a cognate GANTC substrate and on nine near-cognate substrates, each of which contained a single base-pair substitution in the recognition sequence. Altogether, we identified four residues in two of the regions, mutations of which resulted in a strong (>100-fold) reduction of methylation activity. Our data show that DNA recognition by CcrM is a cooperative process, because disruption of critical contacts led to loss of catalytic activity but not to a relaxation in specificity. In addition, we identified a change in the readout of the fifth base pair in the GANTC sequence with two other CcrM variants that showed smaller reductions in overall activity. Based on this and the sequence alignment of CcrM with other DNA methyltransferases of same or related recognition sequence, we propose roles for these two regions in DNA recognition by CcrM.


Asunto(s)
Caulobacter crescentus/enzimología , ADN/metabolismo , Modelos Moleculares , Mutación , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Secuencia de Aminoácidos , Biocatálisis , ADN/genética , Metilación de ADN , Datos de Secuencia Molecular , Mutagénesis , Unión Proteica , Conformación Proteica , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Especificidad por Sustrato
7.
Nucleic Acids Res ; 40(4): 1708-16, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21926159

RESUMEN

The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.


Asunto(s)
Caulobacter crescentus/enzimología , Metilación de ADN , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Plásmidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...