Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 239: 109684, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549771

RESUMEN

Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 µM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 µM. Atropine (1 µM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 µM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 µM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.


Asunto(s)
Acetilcolinesterasa , Trihexifenidilo , Ratas , Animales , Trihexifenidilo/farmacología , Ratas Sprague-Dawley , Acetilcolinesterasa/farmacología , Transmisión Sináptica , Hipocampo , Receptores Muscarínicos , Derivados de Atropina/farmacología , Convulsiones
2.
Neuropharmacology ; 180: 108271, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814088

RESUMEN

For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.


Asunto(s)
Inhibidores de la Colinesterasa/efectos adversos , Insecticidas/efectos adversos , Trastornos del Neurodesarrollo/inducido químicamente , Compuestos Organofosforados/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Femenino , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Síndromes de Neurotoxicidad/diagnóstico , Síndromes de Neurotoxicidad/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/diagnóstico
3.
J Pharmacol Exp Ther ; 375(1): 115-126, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759369

RESUMEN

Earlier reports suggested that galantamine, a drug approved to treat mild-to-moderate Alzheimer's disease (AD), and other centrally acting reversible acetylcholinesterase (AChE) inhibitors can serve as adjunct pretreatments against poisoning by organophosphorus compounds, including the nerve agent soman. The present study was designed to determine whether pretreatment with a clinically relevant oral dose of galantamine HBr mitigates the acute toxicity of 4.0×LD50 soman (15.08 µg/kg) in Macaca fascicularis posttreated intramuscularly with the conventional antidotes atropine (0.4 mg/kg), 2-pyridine aldoxime methyl chloride (30 mg/kg), and midazolam (0.32 mg/kg). The pharmacokinetic profile and maximal degree of blood AChE inhibition (∼25%-40%) revealed that the oral doses of 1.5 and 3.0 mg/kg galantamine HBr in these nonhuman primates (NHPs) translate to human-equivalent doses that are within the range used for AD treatment. Subsequent experiments demonstrated that 100% of NHPs pretreated with either dose of galantamine, challenged with soman, and posttreated with conventional antidotes survived 24 hours. By contrast, given the same posttreatments, 0% and 40% of the NHPs pretreated, respectively, with vehicle and pyridostigmine bromide (1.2 mg/kg, oral), a peripherally acting reversible AChE inhibitor approved as pretreatment for military personnel at risk of exposure to soman, survived 24 hours after the challenge. In addition, soman caused extensive neurodegeneration in the hippocampi of saline- or pyridostigmine-pretreated NHPs, but not in the hippocampi of galantamine-pretreated animals. To our knowledge, this is the first study to demonstrate the effectiveness of clinically relevant oral doses of galantamine to prevent the acute toxicity of supralethal doses of soman in NHPs. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a clinically relevant oral dose of galantamine effectively prevents lethality and neuropathology induced by a supralethal dose of the nerve agent soman in Cynomolgus monkeys posttreated with conventional antidotes. These findings are of major significance for the continued development of galantamine as an adjunct pretreatment against nerve agent poisoning.


Asunto(s)
Antídotos/uso terapéutico , Sustancias para la Guerra Química/toxicidad , Galantamina/uso terapéutico , Hipocampo/efectos de los fármacos , Intoxicación por Organofosfatos/prevención & control , Soman/toxicidad , Acetilcolinesterasa/sangre , Administración Oral , Animales , Antídotos/administración & dosificación , Área Bajo la Curva , Galantamina/administración & dosificación , Galantamina/sangre , Hipocampo/patología , Dosificación Letal Mediana , Macaca fascicularis , Masculino , Intoxicación por Organofosfatos/enzimología
4.
Neurotoxicol Teratol ; 81: 106914, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32652103

RESUMEN

High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Insecticidas/farmacología , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Animales , Inhibidores de la Colinesterasa/farmacología , Femenino , Cobayas , Malatión/farmacología , Masculino , Síndromes de Neurotoxicidad/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Aprendizaje Espacial/efectos de los fármacos
5.
Brain Sci ; 10(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545593

RESUMEN

This study used in vivo magnetic resonance imaging (MRI) to identify age dependent brain structural characteristics in Dunkin Hartley guinea pigs. Anatomical T2-weighted images, diffusion kurtosis (DKI) imaging, and T2 relaxometry measures were acquired from a cohort of male guinea pigs from postnatal day (PND) 18-25 (juvenile) to PND 46-51 (adolescent) and PND 118-123 (young adult). Whole-brain diffusion measures revealed the distinct effects of maturation on the microstructural complexity of the male guinea pig brain. Specifically, fractional anisotropy (FA), as well as mean, axial, and radial kurtosis in the corpus callosum, amygdala, dorsal-ventral striatum, and thalamus significantly increased from PND 18-25 to PND 118-123. Age-related alterations in DKI measures within these brain regions paralleled the overall alterations observed in the whole brain. Age-related changes in FA and kurtosis in the gray matter-dominant parietal cerebral cortex and dorsal hippocampus were less pronounced than in the other brain regions. The regional data analysis revealed that between-age changes of diffusion kurtosis metrics were more pronounced than those observed in diffusion tensor metrics. The age-related anatomical differences reported here may be important determinants of the age-dependent neurobehavior of guinea pigs in different tasks.

6.
Psychopharmacology (Berl) ; 237(1): 219-230, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31686175

RESUMEN

RATIONALE: Cognitive benefits of nicotinic acetylcholine receptor (nAChR) agonists are well established but have generally been of small magnitude and uncertain clinical significance. A way of raising the effect size may be to facilitate agonist-induced responses by co-administering a nAChR positive allosteric modulator (PAM). OBJECTIVE: The aim was to test whether galantamine, a PAM at several nAChR subtypes, can potentiate the cognitive-enhancing effects of nicotine. METHODS: Twenty-six adult never-smokers were treated, in a double-blind counterbalanced sequence, with nicotine (7 mg/24 h, transdermally) and galantamine (4 mg, p.o.) combined, nicotine alone, galantamine alone, and double placebo. A low dose of galantamine was chosen to minimize acetylcholinesterase inhibition, which was verified in blood assays. In each condition, participants were tested with three cognitive tasks. RESULTS: Nicotine significantly improved reaction time (RT) and signal detection in a visuospatial attention task and the Rapid Visual Information Processing Task. Galantamine did not modulate these effects. A trend toward RT reduction by galantamine correlated with acetylcholinesterase inhibition. In a change detection task, there were no effects of nicotine or galantamine alone on accuracy or RT. However, both drugs combined acted synergistically to reduce RT. This effect was not associated with acetylcholinesterase inhibition. CONCLUSIONS: A pattern consistent with allosteric potentiation of nicotine effects by galantamine was observed on one of six performance measures. This may reflect specific nAChR subtype involvement, or additional pharmacological actions of galantamine may have overshadowed similar interactions on other measures. The finding suggests that allosteric potentiation of nAChR agonist-induced cognitive benefits is possible in principle.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Cognición/efectos de los fármacos , Galantamina/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Nootrópicos/farmacología , Adulto , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tiempo de Reacción/efectos de los fármacos , Adulto Joven
7.
Neuropsychopharmacology ; 45(2): 426-436, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216563

RESUMEN

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) retains the rapid and sustained antidepressant-like actions of ketamine, but is spared its dissociative-like properties and abuse potential. While (2R,6R)-HNK is thought to exert its antidepressant-like effects by potentiating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission, it is unknown how it exerts this effect. The acute synaptic effects of (2R,6R)-HNK were examined by recording field excitatory postsynaptic potentials (fEPSPs) and miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal slices. (2R,6R)-HNK bath application caused a rapid and persistent potentiation of AMPAR-mediated Schaffer collateral (SC)-CA1 fEPSPs in slices derived from male and female rats. The (2R,6R)-HNK-induced potentiation occurred independent of N-methyl-D-aspartate receptor (NMDAR) activity, was accompanied by a concentration-dependent decrease in paired pulse ratios, and was occluded by raising glutamate release probability. In additon, in the presence of tetrodotoxin, (2R,6R)-HNK increased the frequency, but not amplitude, of mEPSC events, confirming a presynaptic site of action that is independent of glutamatergic network disinhibition. A dual extracellular recording configuration revealed that the presynaptic effects of (2R,6R)-HNK were synapse-selective, occurring in CA1-projecting SC terminals, but not in CA1-projecting temporoammonic terminals. Overall, we found that (2R,6R)-HNK enhances excitatory synaptic transmission in the hippocampus through a concentration-dependent, NMDAR-independent, and synapse-selective increase in glutamate release probability with no direct actions on AMPAR function. These findings provide novel insight regarding (2R,6R)-HNK's acute mechanism of action, and may inform novel antidepressant drug mechanisms that could yield superior efficacy, safety, and tolerability.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Ketamina/análogos & derivados , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Ketamina/farmacología , Masculino , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 116(11): 5160-5169, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796190

RESUMEN

Preclinical studies indicate that (2R,6R)-hydroxynorketamine (HNK) is a putative fast-acting antidepressant candidate. Although inhibition of NMDA-type glutamate receptors (NMDARs) is one mechanism proposed to underlie ketamine's antidepressant and adverse effects, the potency of (2R,6R)-HNK to inhibit NMDARs has not been established. We used a multidisciplinary approach to determine the effects of (2R,6R)-HNK on NMDAR function. Antidepressant-relevant behavioral responses and (2R,6R)-HNK levels in the extracellular compartment of the hippocampus were measured following systemic (2R,6R)-HNK administration in mice. The effects of ketamine, (2R,6R)-HNK, and, in some cases, the (2S,6S)-HNK stereoisomer were evaluated on the following: (i) NMDA-induced lethality in mice, (ii) NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 field of mouse hippocampal slices, (iii) NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and NMDA-evoked currents in CA1 pyramidal neurons of rat hippocampal slices, and (iv) recombinant NMDARs expressed in Xenopus oocytes. While a single i.p. injection of 10 mg/kg (2R,6R)-HNK exerted antidepressant-related behavioral and cellular responses in mice, the ED50 of (2R,6R)-HNK to prevent NMDA-induced lethality was found to be 228 mg/kg, compared with 6.4 mg/kg for ketamine. The 10 mg/kg (2R,6R)-HNK dose generated maximal hippocampal extracellular concentrations of ∼8 µM, which were well below concentrations required to inhibit synaptic and extrasynaptic NMDARs in vitro. (2S,6S)-HNK was more potent than (2R,6R)-HNK, but less potent than ketamine at inhibiting NMDARs. These data demonstrate the stereoselectivity of NMDAR inhibition by (2R,6R;2S,6S)-HNK and support the conclusion that direct NMDAR inhibition does not contribute to antidepressant-relevant effects of (2R,6R)-HNK.


Asunto(s)
Antidepresivos/farmacología , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Concentración 50 Inhibidora , Ketamina/administración & dosificación , Ketamina/química , Masculino , Ratones , N-Metilaspartato/metabolismo , Subunidades de Proteína/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Xenopus laevis
9.
Pharmacol Rev ; 70(3): 621-660, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29945898

RESUMEN

Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.


Asunto(s)
Analgésicos/farmacología , Anestésicos/farmacología , Antidepresivos/farmacología , Ketamina/análogos & derivados , Ketamina/farmacología , Analgésicos/uso terapéutico , Anestésicos/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Humanos , Ketamina/uso terapéutico
10.
J Neurochem ; 142 Suppl 2: 162-177, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28791702

RESUMEN

Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Asunto(s)
Acetilcolinesterasa/metabolismo , Cloropirifos/farmacología , Inhibidores de la Colinesterasa/toxicidad , Insecticidas/toxicidad , Síndromes de Neurotoxicidad/tratamiento farmacológico , Acetilcolina/metabolismo , Animales , Humanos
13.
Neurotoxicology ; 56: 17-28, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27296654

RESUMEN

Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25mg/kg,s.c.) or vehicle (peanut oil) for 10days starting on presumed gestation day (GD) 53-55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain.


Asunto(s)
Cloropirifos/toxicidad , Insecticidas/toxicidad , Discapacidades para el Aprendizaje/etiología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Aprendizaje Espacial/efectos de los fármacos , Factores de Edad , Animales , Colinesterasas/metabolismo , Conducta Exploratoria/efectos de los fármacos , Femenino , Cobayas , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología
14.
Nature ; 533(7604): 481-6, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27144355

RESUMEN

Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.


Asunto(s)
Antidepresivos/metabolismo , Antidepresivos/farmacología , Ketamina/análogos & derivados , Ketamina/metabolismo , Animales , Antidepresivos/efectos adversos , Femenino , Ketamina/efectos adversos , Ketamina/farmacología , Masculino , Ratones , Receptores AMPA/agonistas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Factores de Tiempo
15.
Neurotoxicology ; 48: 9-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25704171

RESUMEN

This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (25 mg/kg, s.c.) or vehicle (peanut oil) once per day for 10 consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40-45 post-natal days (PND) using the Morris water maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and diffusion kurtosis imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of prenatal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment.


Asunto(s)
Encéfalo/efectos de los fármacos , Cloropirifos/toxicidad , Insecticidas/toxicidad , Trastornos de la Memoria/inducido químicamente , Síndromes de Neurotoxicidad/etiología , Intoxicación por Organofosfatos/etiología , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Imagen de Difusión Tensora , Reacción de Fuga/efectos de los fármacos , Femenino , Edad Gestacional , Cobayas , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/psicología , Intoxicación por Organofosfatos/patología , Intoxicación por Organofosfatos/fisiopatología , Intoxicación por Organofosfatos/psicología , Embarazo , Tiempo de Reacción/efectos de los fármacos
16.
Biochem Pharmacol ; 93(4): 506-18, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25542997

RESUMEN

The G-protein-coupled receptor 35 (GPR35) was de-orphanized after the discovery that kynurenic acid (KYNA), an endogenous tryptophan metabolite, acts as an agonist of this receptor. Abundant evidence supports that GPR35 exists primarily in peripheral tissues. Here, we tested the hypothesis that GPR35 exists in the hippocampus and influences the neuronal activity. Fluorescence immunohistochemical staining using an antibody anti-NeuN (a neuronal marker), an antibody anti-GFAP (a glial marker), and an antibody anti-GPR35 revealed that neurons in the stratum oriens, stratum pyramidale, and stratum radiatum of the CA1 field of the hippocampus express GPR35. To determine the presence of functional GPR35 in the neurocircuitry, we tested the effects of various GPR35 agonists on the frequency of spontaneous action potentials recorded as fast current transients (CTs) from stratum radiatum interneurons (SRIs) under cell-attached configuration in rat hippocampal slices. Bath application of the GPR35 agonists zaprinast (1-10 µM), dicumarol (50-100 µM), pamoic acid (500-1000 µM), and amlexanox (3 µM) produced a concentration- and time-dependent reduction in the frequency of CTs. Superfusion of the hippocampal slices with the GPR35 antagonist ML145 (1 µM) increased the frequency of CTs and reduced the inhibitory effect of zaprinast. Bath application of phosphodiesterase 5 inhibitor sildenafil (1 or 5 µM) was ineffective, whereas a subsequent application of zaprinast was effective in reducing the CT frequency. The present results demonstrate for the first time that functional GPR35s are expressed by CA1 neurons and suggest that these receptors can be molecular targets for controlling neuronal activity in the hippocampus.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Animales Recién Nacidos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
17.
J Pharmacol Exp Ther ; 350(2): 313-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24907067

RESUMEN

The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.


Asunto(s)
Modelos Animales , Intoxicación por Organofosfatos/complicaciones , Animales , Ansiedad/inducido químicamente , Electroencefalografía/efectos de los fármacos , Cobayas , Humanos , Dosificación Letal Mediana , Aprendizaje por Laberinto/efectos de los fármacos , Compuestos Organofosforados/toxicidad
18.
Neurosci Lett ; 554: 167-71, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23973303

RESUMEN

The Schaffer collaterals are among the major glutamatergic inputs to CA1 pyramidal neurons, the primary output of the hippocampus, which also receive sparse recurrent inputs from pyramidal neurons in the CA1 field. Although tonically active α7 nicotinic acetylcholine receptors (nAChRs) have been shown to sustain spontaneous glutamate transmission to CA1 pyramidal neurons in hippocampal slices under resting conditions, it remains to be determined whether these receptors are those expressed by CA3 or CA1 pyramidal neurons. This study was designed to test the hypothesis that the CA3 field of the hippocampus is a significant source of α7 nAChR-sustained glutamatergic transmission to CA1 pyramidal neurons. To this end, spontaneous excitatory postsynaptic currents (EPSCs) were recorded from CA1 and CA3 pyramidal neurons in intact rat hippocampal slices as well as from CA1 pyramidal neurons in CA3-ablated slices under various experimental conditions. Surgical removal of the CA3 region from the slices reduced by 20% the frequency of spontaneous EPSCs recorded from CA1 pyramidal neurons. This finding is in agreement with the concept that the CA3 field contributes significantly to the maintenance of spontaneous glutamatergic synaptic activity in CA1 pyramidal neurons. In addition, the α7 nAChR antagonist methyllycaconitine (MLA, 10nM) reduced the frequency of spontaneous EPSCs recorded from CA1 pyramidal neurons by 30% in intact slices and 12% in CA3-ablated slices. Taken together, these results demonstrate that tonically active α7 nAChRs in CA3 pyramidal neurons and/or in the Mossy fibers that innervate the CA3 pyramidal neurons do in fact contribute to the maintenance of glutamatergic synaptic activity in CA1 pyramidal neurons of hippocampal slices under resting conditions.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Ácido Glutámico/metabolismo , Células Piramidales/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores , Masculino , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica , Tetrodotoxina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores
19.
Neurotoxicology ; 36: 72-81, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23511125

RESUMEN

The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2µg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20-100ms) inter-event intervals. Donepezil's effects were suppressed significantly in presence of 10µM mecamylamine or 10nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman.


Asunto(s)
Región CA1 Hipocampal/citología , Inhibidores de la Colinesterasa/farmacología , Ácido Glutámico/metabolismo , Interneuronas/efectos de los fármacos , Nicotina/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Acetilcolina/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Donepezilo , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Cobayas , Técnicas In Vitro , Indanos/farmacología , Dosificación Letal Mediana , Masculino , Mecamilamina/farmacología , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Ratas , Soman/farmacología
20.
Neurotoxicology ; 36: 42-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23411083

RESUMEN

This study was designed to test the hypothesis that in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) can detect in adulthood the neurotoxic effects of a single exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos. Twelve female guinea pigs were given either a single dose of chlorpyrifos (0.6×LD50 or 300mg/kg, sc) or peanut oil (vehicle; 0.5ml/kg, sc) at 35-40 days of age. One year after the exposure, the animals were tested in the Morris water maze. Three days after the end of the behavioral testing, the metabolic and structural integrity of the brain of the animals was examined by means of MRI/MRS. In the Morris water maze, the chlorpyrifos-exposed guinea pigs showed significant memory deficit. Although no significant anatomical differences were found between the chlorpyrifos-exposed guinea pigs and the control animals by in vivo MRI, the chlorpyrifos-exposed animals showed significant decreases in hippocampal myo-inositol concentration using MRS. The present results indicate that a single sub-lethal exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos can lead to long-term memory deficits that are accompanied by significant reductions in the levels of hippocampal myo-inositol.


Asunto(s)
Cloropirifos/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inositol/metabolismo , Insecticidas/toxicidad , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Femenino , Cobayas , Dosificación Letal Mediana , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Aprendizaje por Laberinto/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...