Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3654, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339984

RESUMEN

CRISPR-Cas effector complexes enable the defense against foreign nucleic acids and have recently been exploited as molecular tools for precise genome editing at a target locus. To bind and cleave their target, the CRISPR-Cas effectors have to interrogate the entire genome for the presence of a matching sequence. Here we dissect the target search and recognition process of the Type I CRISPR-Cas complex Cascade by simultaneously monitoring DNA binding and R-loop formation by the complex. We directly quantify the effect of DNA supercoiling on the target recognition probability and demonstrate that Cascade uses facilitated diffusion for its target search. We show that target search and target recognition are tightly linked and that DNA supercoiling and limited 1D diffusion need to be considered when understanding target recognition and target search by CRISPR-Cas enzymes and engineering more efficient and precise variants.


Asunto(s)
Sistemas CRISPR-Cas , ADN , Sistemas CRISPR-Cas/genética , ADN/genética
2.
Nucleic Acids Res ; 49(21): 12411-12421, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792162

RESUMEN

CRISPR-Cas9 is a ribonucleoprotein complex that sequence-specifically binds and cleaves double-stranded DNA. Wildtype Cas9 and its nickase and cleavage-incompetent mutants have been used in various biological techniques due to their versatility and programmable specificity. Cas9 has been shown to bind very stably to DNA even after cleavage of the individual DNA strands, inhibiting further turnovers and considerably slowing down in-vivo repair processes. This poses an obstacle in genome editing applications. Here, we employed single-molecule magnetic tweezers to investigate the binding stability of different Streptococcus pyogenes Cas9 variants after cleavage by challenging them with supercoiling. We find that different release mechanisms occur depending on which DNA strand is cleaved. After initial target strand cleavage, supercoils are only removed after the collapse of the R-loop. We identified several states with different stabilities of the R-loop. Most importantly, we find that the post-cleavage state of Cas9 exhibits a higher stability than the pre-cleavage state. After non-target strand cleavage, supercoils are immediately but slowly released by swiveling of the non-target strand around Cas9 bound to the target strand. Consequently, Cas9 and its non-target strand nicking mutant stay stably bound to the DNA for many hours even at elevated torsional stress.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , División del ADN , ADN/metabolismo , Streptococcus pyogenes/enzimología , Algoritmos , Proteína 9 Asociada a CRISPR/genética , ADN/genética , Estabilidad de Enzimas/genética , Magnetismo , Mutación , Pinzas Ópticas , Unión Proteica , Estructuras R-Loop/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Streptococcus pyogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...