Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 258: 119413, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876422

RESUMEN

Frequent detection of terbutaline in wastewater highlights its potential risks to human health associated in the environment. Exposure to terbutaline through contaminated water sources or food chain have adverse effects to human health. This work emphasized on the removal of terbutaline from wastewater using adsorption technology. Mechanochemically synthesized [Cu(INA)2] metal-organic frameworks (MOFs) and its magnetic composite ([Cu(INA)2]-MOF@Fe3O4) are designed with higher specific surface areas and tailored features to accommodate the molecular size and structure of terbutaline. Thus, batch experiment has been conducted using the [Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 for the terbutaline adsorption. The adsorption efficiency achieved by the MOFs was 91.8% and 99.3% for the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 respectively. The optimum for the adsorption study included terbutaline concentration of 40 mg/L, adsorbent dose of 5 mg/L, pH of 11, temperature of 25 °C and equilibrium time of 40 min. The kinetics and isotherms have been described by pseudo-second order and Langmuir models, while the thermodynamics revealed the exothermic and spontaneous nature of the process. The promising performance of the MOFs is manifested on the ease of regeneration and reusability, achieving adsorption efficiency of 85.0% and 94.7% by the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4, respectively at five consecutive cycles. The higher performance of the MOFs demonstrates their excellent potentialities for the terbutaline adsorption from the aqueous solution.


Asunto(s)
Cobre , Terbutalina , Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Terbutalina/química , Cobre/química , Estructuras Metalorgánicas/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Cinética , Compuestos Férricos/química
2.
Environ Res ; 256: 119235, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810826

RESUMEN

Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.


Asunto(s)
Colorantes , Residuos Industriales , Membranas Artificiales , Contaminantes Químicos del Agua , Colorantes/química , Colorantes/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Filtración/métodos , Adsorción
3.
Environ Res ; 252(Pt 3): 119024, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692419

RESUMEN

Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Titanio , Titanio/química , Dióxido de Carbono/química , Dióxido de Carbono/análisis , Estructuras Metalorgánicas/química , Aguas Residuales/química , Restauración y Remediación Ambiental/métodos , Nanopartículas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis
4.
Environ Geochem Health ; 46(4): 145, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568460

RESUMEN

Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.


Asunto(s)
Nanotubos de Carbono , Aguas Residuales , Polímeros , Sulfonamidas , Sulfanilamida , Preparaciones Farmacéuticas
5.
Sci Rep ; 14(1): 5589, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453990

RESUMEN

The utilization of plants for the production of metallic nanoparticles is gaining significant attention in research. In this study, we conducted phytochemical screening of Alstonia scholaris (A. scholaris) leaves extracts using various solvents, including chloroform, ethyl acetate, n-hexane, methanol, and water. Our findings revealed higher proportions of flavonoids and alkaloids in both solvents compared to other phytochemical species. In the methanol, extract proteins, anthraquinone and reducing sugar were not detected. On the other hand, the aqueous extract demonstrated the presence of amino acids, reducing sugar, phenolic compounds, anthraquinone, and saponins. Notably, ethyl acetate and chloroform extracts displayed the highest levels of bioactive compounds among all solvents. Intrigued by these results, we proceeded to investigate the antibacterial properties of the leaf extracts against two major bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). All extracts exhibited significant zones of inhibition against both bacterial isolates, with S. aureus showing higher susceptibility compared to E. coli. Notably, the methanol extract displayed the most potent I hibitory effect against all organisms. Inspired by the bioactivity of the methanol extract, we employed it as a plant-based material for the green synthesis of copper nanoparticles (Cu-NPs). The synthesized Cu-NPs were characterized using Fourier infrared spectroscopy (FT-IR), UV-visible spectroscopic analysis, and scanning electron microscopy (SEM). The observed color changes confirmed the successful formation of Cu-NPs, while the FTIR analysis matched previously reported peaks, further verifying the synthesis. The SEM micrographs indicated the irregular shapes of the surface particles. From the result obtained by energy dispersive X-ray spectroscopic analysis, Cu has the highest relative abundance of 67.41 wt%. Confirming the purity of the Cu-NPs colloid. These findings contribute to the growing field of eco-friendly nanotechnology and emphasize the significance of plant-mediated approaches in nanomaterial synthesis and biomedical applications.


Asunto(s)
Acetatos , Alstonia , Antiinfecciosos , Nanopartículas del Metal , Cobre/química , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Metanol/farmacología , Cloroformo/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Fitoquímicos/farmacología , Solventes/farmacología , Azúcares/farmacología , Antraquinonas/farmacología , Pruebas de Sensibilidad Microbiana
6.
Chemosphere ; 351: 141218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266876

RESUMEN

The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.


Asunto(s)
Grafito , Nanopartículas del Metal , Compuestos de Nitrógeno , Óxidos , Humanos , Sulfonamidas , Aguas Residuales , Sulfanilamida , Preparaciones Farmacéuticas , Catálisis
7.
Nanomaterials (Basel) ; 13(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37686913

RESUMEN

The purpose of the presented study is to examine the impact of zinc oxide nanoparticles (ZnO NPs) on the spectrum features of poly [2-methoxy-5-(3',7'-dimethyloctyloxy)-1, 4-phenylenevinylene] (MDMO-PPV). The characteristics of the MDMO-PPV and doped ZnO NPS samples were assessed using several techniques. A set of solutions of MDMO-PPV in toluene that were doped with different ratio percentages of ZnO NPs was prepared to obtain thin films. Pristine and composite solutions were spin-coated on glass substrates. It was observed that MDMO-PPV had two distinct absorbance bands at 310 and 500 nm in its absorption spectrum. The UV-Vis spectrum was dramatically changed when 5% of ZnO NPs were added. The result showed a significant reduction in absorption of the band 500 nm, while 310 nm absorption increased rapidly and became more pronounced. Upon adding (10%) ZnONPs to the sample, no noticeable change was observed in the 500 nm band. However, the 310 nm band shifted towards the blue region. There is a dominant peak in the PL spectrum of MDMO-PPV in its pristine form around 575 nm and a smaller hump around 600 nm of the spectrum. The spectral profile at 600 nm and the intensity of both bands are improved by raising the ZnO NP concentration. These bands feature two vibronic transitions identified as (0-0) and (0-1). When the dopant concentration increased to the maximum dopant percentage (10%), the energy band gap values increased by 0.21 eV compared to the pristine MDMO-PPV. In addition, the refractive index (n) decreased to its lowest value of 2.30 with the presence of concentrations of ZnO NPs.

8.
Chemosphere ; 343: 140223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734509

RESUMEN

Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.

9.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511354

RESUMEN

This review mainly addresses applications of polymer/graphene nanocomposites in certain significant energy storage and conversion devices such as supercapacitors, Li-ion batteries, and fuel cells. Graphene has achieved an indispensable position among carbon nanomaterials owing to its inimitable structure and features. Graphene and its nanocomposites have been recognized for providing a high surface area, electron conductivity, capacitance, energy density, charge-discharge, cyclic stability, power conversion efficiency, and other advanced features in efficient energy devices. Furthermore, graphene-containing nanocomposites have superior microstructure, mechanical robustness, and heat constancy characteristics. Thus, this state-of-the-art article offers comprehensive coverage on designing, processing, and applying graphene-based nanoarchitectures in high-performance energy storage and conversion devices. Despite the essential features of graphene-derived nanocomposites, several challenges need to be overcome to attain advanced device performance.


Asunto(s)
Líquidos Corporales , Grafito , Nanocompuestos , Carbono , Capacidad Eléctrica
10.
Molecules ; 28(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110697

RESUMEN

The increased interest in the transition from liquid to solid polymer electrolytes (SPEs) has driven enormous research in the area polymer electrolyte technology. Solid biopolymer electrolytes (SBEs) are a special class of SPEs that are obtained from natural polymers. Recently, SBEs have been generating much attention because they are simple, inexpensive, and environmentally friendly. In this work, SBEs based on glycerol-plasticized methylcellulose/pectin/potassium phosphate (MC/PC/K3PO4) are investigated for their potential application in an electrochemical double-layer capacitor (EDLC). The structural, electrical, thermal, dielectric, and energy moduli of the SBEs were analyzed via X-ray diffractometry (XRD), Fourier transforms infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), transference number measurement (TNM), and linear sweep voltammetry (LSV). The plasticizing effect of glycerol in the MC/PC/K3PO4/glycerol system was confirmed by the change in the intensity of the samples' FTIR absorption bands. The broadening of the XRD peaks demonstrates that the amorphous component of SBEs increases with increasing glycerol concentration, while EIS plots demonstrate an increase in ionic conductivity with increasing plasticizer content owing to the formation of charge-transfer complexes and the expansion of amorphous domains in polymer electrolytes (PEs). The sample containing 50% glycerol has a maximal ionic conductivity of about 7.5 × 10-4 scm-1, a broad potential window of 3.99 V, and a cation transference number of 0.959 at room temperature. Using the cyclic voltammetry (CV) test, the EDLC constructed from the sample with the highest conductivity revealed a capacitive characteristic. At 5 mVs-1, a leaf-shaped profile with a specific capacitance of 57.14 Fg-1 was measured based on the CV data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...