Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab Rep ; 38: 101027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38077956

RESUMEN

FLNC gene encodes for Filamin-C (FLNC) protein, a sacromeric protein with important structural and signaling functions in the myocyte. Pathogenic dominant variants in FLNC were initially linked to myofibrillar myopathy and over time, evidence showed association of this gene with different forms of autosomal dominant cardiomyopathy including hypertrophic, dilated and restrictive forms. Recently, two cases of recessive FLNC mutations have been reported by Reinstein et al. and Kölbel et al., one with only cardiomyopathy and other with only myopathy. In this report, we describe a third case, a boy who was diagnosed at 10 years of age with shortness of breath and dilated cardiomyopathy who on sequencing was found to have a novel homozygous splice site variant (NM_001458.4 c.2122-1G>C) in FLNC. This case suggests that the phenotype associated with variants in FLNC is very heterogenous and can be inherited in dominant or recessive forms, with later being more severe and of earlier onset.

2.
Saudi J Ophthalmol ; 37(4): 301-306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155673

RESUMEN

PURPOSE: Achromatopsia is a rare stationary retinal disorder that primarily affects the cone photoreceptors. Individuals with achromatopsia present with photophobia, nystagmus, reduced visual acuity (VA), and color blindness. Multiple genes responsible for achromatopsia have been identified (e.g. cyclic nucleotide-gated channel subunit alpha 3 [CNGA3] and activating transcription factor 6). Studies have assessed the role of gene therapy in achromatopsia. Therefore, for treatment and prevention, the identification of phenotypes and genotypes is crucial. Here, we described the clinical manifestations and genetic mutations associated with achromatopsia in patients from Saudi Arabia. METHODS: This case series study included 15 patients with clinical presentations, suggestive of achromatopsia, who underwent ophthalmological and systemic evaluations. Patients with typical achromatopsia phenotype underwent genetic evaluation using whole-exome testing. RESULTS: All patients had nystagmus (n = 15) and 93.3% had photophobia (n = 14). In addition, all patients (n = 15) had poor VA. Hyperopia with astigmatism was observed in 93.3% (n = 14) and complete color blindness in 93.3% of the patients (n = 14). In the context of family history, both parents of all patients (n = 15) were genetic carriers, with a high consanguinity rate (82%, n = 9 families). Electroretinography showed cone dysfunction with normal rods in 66.7% (n = 10) and both cone-rod dysfunction in 33.3% (n = 5) patients. Regarding the genotypic features, 93% of patients had variants in CNGA3 (n = 14) categorized as pathogenic Class 1 (86.7%, n = 13). Further, 66.7% (n = 10) of patients also harbored the c.661C>T DNA variant. Further, the patients were homozygous for these mutations. Three other variants were also identified: c.1768G>A (13.3%, n = 2), c.830G>A (6.6%, n = 1), and c. 822G >T (6.6%, n = 1). CONCLUSION: Consanguinity and belonging to the same tribe are major risk factors for disease inheritance. The most common genotype was CNGA3 with the c.661C>T DNA variant. We recommend raising awareness among families and providing genetic counseling for this highly debilitating disease.

3.
Front Genet ; 14: 1294214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292436

RESUMEN

Congenital disorders of glycosylation (CDG) are a group of more than 100 rare genetic disorders characterized by impaired glycosylation of proteins and lipids. The clinical presentation of CDG varies tremendously, from single-organ to multi-organ involvement and from prenatal death to a normal adult phenotype. In this case study, we report a large consanguineous family with multiple children suffering from cerebral palsy, seizure, developmental and epileptic encephalopathy, and global developmental delay. Whole-exome sequencing (WES) analysis revealed a homozygous variant in the UDP-glucose dehydrogenase (UGDH) gene (c.950G>A; p.R317Q) which segregates with the familial phenotype with a plausible autosomal recessive mode of inheritance, indicating a potential disease-causing association. The UGDH gene encodes the UDP-glucose dehydrogenase, a key enzyme in the synthesis of specific extracellular matrix constituents (proteoglycans and glycolipids) involved in neural migration and connectivity during early brain development. Many pathogenic mutations of UGDH have been reported in recent literature works. However, the variant identified in this study has been observed only in the Saudi population (13 families) and not in any other ethnic background, suggesting that it may be an ancient founder mutation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...