Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1427: 175-184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322348

RESUMEN

Angiotensin II (Ang II) is a hormone that plays a major role in maintaining homeostasis. The Ang II receptor type 1 (AT1R) is expressed in acute O2 sensitive cells, including carotid body (CB) type I cells and pheochromocytoma 12 (PC12) cells, and Ang II increases cell activity. While a functional role for Ang II and AT1Rs in increasing the activity of O2 sensitive cells has been established, the nanoscale distribution of AT1Rs has not. Furthermore, it is not known how exposure to hypoxia may alter the single-molecule arrangement and clustering of AT1Rs. In this study, the AT1R nanoscale distribution under control normoxic conditions in PC12 cells was determined using direct stochastic optical reconstruction microscopy (dSTORM). AT1Rs were arranged in distinct clusters with measurable parameters. Across the entire cell surface there averaged approximately 3 AT1R clusters/µm2 of cell membrane. Cluster area varied in size ranging from 1.1 × 10-4 to 3.9 × 10-2 µm2. Twenty-four hours of exposure to hypoxia (1% O2) altered clustering of AT1Rs, with notable increases in the maximum cluster area, suggestive of an increase in supercluster formation. These observations could aid in understanding mechanisms underlying augmented Ang II sensitivity in O2 sensitive cells in response to sustained hypoxia.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Ratas , Animales , Microscopía , Células PC12 , Receptor de Angiotensina Tipo 1/metabolismo , Hipoxia , Angiotensina II/metabolismo , Angiotensina II/farmacología
2.
Front Physiol ; 13: 908617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711317

RESUMEN

It is generally acknowledged that the carotid body (CB) type I cell mitochondria are unique, being inhibited by relatively small falls in PaO2 well above those known to inhibit electron transport in other cell types. This feature is suggested to allow for the CB to function as an acute O2 sensor, being stimulated and activating systemic protective reflexes before the metabolism of other cells becomes compromised. What is less clear is precisely how a fall in mitochondrial activity links to type I cell depolarisation, a process that is required for initiation of the chemotransduction cascade and post-synaptic action potential generation. Multiple mitochondrial/metabolic signalling mechanisms have been proposed including local generation of mitochondrial reactive oxygen species (mitoROS), a change in mitochondrial/cellular redox status, a fall in MgATP and an increase in lactate. Although each mechanism is based on compelling experimental evidence, they are all not without question. The current review aims to explore the importance of each of these signalling pathways in mediating the overall CB response to hypoxia. We suggest that there is unlikely to be a single mechanism, but instead multiple mitochondrial related signalling pathways are recruited at different PaO2s during hypoxia. Furthermore, it still remains to be determined if mitochondrial signalling acts independently or in partnership with extra-mitochondrial O2-sensors.

3.
Antioxidants (Basel) ; 10(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070267

RESUMEN

Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)-A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10-30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20-50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular-respiratory disorders.

4.
Pflugers Arch ; 473(1): 37-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210151

RESUMEN

Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both ß1 and ß2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for ß-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Cuerpo Carotídeo/efectos de los fármacos , Hipoxia , Propranolol/farmacología , Antagonistas Adrenérgicos beta , Animales , Dióxido de Carbono , Esquema de Medicación , Masculino , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos
5.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825527

RESUMEN

The carotid body (CB) is an important organ located at the carotid bifurcation that constantly monitors the blood supplying the brain. During hypoxia, the CB immediately triggers an alarm in the form of nerve impulses sent to the brain. This activates protective reflexes including hyperventilation, tachycardia and vasoconstriction, to ensure blood and oxygen delivery to the brain and vital organs. However, in certain conditions, including obstructive sleep apnea, heart failure and essential/spontaneous hypertension, the CB becomes hyperactive, promoting neurogenic hypertension and arrhythmia. G-protein-coupled receptors (GPCRs) are very highly expressed in the CB and have key roles in mediating baseline CB activity and hypoxic sensitivity. Here, we provide a brief overview of the numerous GPCRs that are expressed in the CB, their mechanism of action and downstream effects. Furthermore, we will address how these GPCRs and signaling pathways may contribute to CB hyperactivity and cardiovascular and respiratory disease. GPCRs are a major target for drug discovery development. This information highlights specific GPCRs that could be targeted by novel or existing drugs to enable more personalized treatment of CB-mediated cardiovascular and respiratory disease.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Cuerpo Carotídeo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Enfermedades Respiratorias/metabolismo , Adenosina/metabolismo , Animales , Enfermedades Cardiovasculares/fisiopatología , Cuerpo Carotídeo/fisiopatología , Dopamina/metabolismo , Epinefrina/metabolismo , Humanos , Hipoxia/metabolismo , Transducción de Señal , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...