Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiome ; 4(1): 65, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27998314

RESUMEN

BACKGROUND: The International Space Station (ISS) represents a unique biotope for the human crew but also for introduced microorganisms. Microbes experience selective pressures such as microgravity, desiccation, poor nutrient-availability due to cleaning, and an increased radiation level. We hypothesized that the microbial community inside the ISS is modified by adapting to these stresses. For this reason, we analyzed 8-12 years old dust samples from Russian ISS modules with major focus on the long-time surviving portion of the microbial community. We consequently assessed the cultivable microbiota of these samples in order to analyze their extremotolerant potential against desiccation, heat-shock, and clinically relevant antibiotics. In addition, we studied the bacterial and archaeal communities from the stored Russian dust samples via molecular methods (next-generation sequencing, NGS) and compared our new data with previously derived information from the US American ISS dust microbiome. RESULTS: We cultivated and identified in total 85 bacterial, non-pathogenic isolates (17 different species) and 1 fungal isolate from the 8-12 year old dust samples collected in the Russian segment of the ISS. Most of these isolates exhibited robust resistance against heat-shock and clinically relevant antibiotics. Microbial 16S rRNA gene and archaeal 16S rRNA gene targeting Next Generation Sequencing showed signatures of human-associated microorganisms (Corynebacterium, Staphylococcus, Coprococcus etc.), but also specifically adapted extremotolerant microorganisms. Besides bacteria, the detection of archaeal signatures in higher abundance was striking. CONCLUSIONS: Our findings reveal (i) the occurrence of living, hardy microorganisms in archived Russian ISS dust samples, (ii) a profound resistance capacity of ISS microorganisms against environmental stresses, and (iii) the presence of archaeal signatures on board. In addition, we found indications that the microbial community in the Russian segment dust samples was different to recently reported US American ISS microbiota.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Polvo/análisis , Extremófilos/aislamiento & purificación , Microbiota/efectos de los fármacos , Nave Espacial , Aclimatación , Archaea/clasificación , Archaea/efectos de los fármacos , Archaea/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Desecación , Ambientes Extremos , Extremófilos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Microbiota/fisiología , ARN Ribosómico 16S/genética , Vuelo Espacial , Ingravidez
2.
Rapid Commun Mass Spectrom ; 29(16): 1465-72, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-26212161

RESUMEN

RATIONALE: Data on the bulk stable isotope composition of soil bacteria and bacterivorous soil animals are required to estimate the nutrient and energy fluxes via bacterial channels within detrital food webs. We measured the isotopic composition of slime molds (Myxogastria, Amoebozoa), a group of soil protozoans forming macroscopic spore-bearing fruiting bodies. An analysis of largely bacterivorous slime molds can provide information on the bulk stable isotope composition of soil bacteria. METHODS: Fruiting bodies of slime molds were collected in a monsoon tropical forest of Cat Tien National Park, Vietnam, and analyzed by continuous-flow isotope ratio mass spectrometry. Prior to stable isotope analysis, carbonates were removed from a subset of samples by acidification. To estimate the trophic position of slime molds, their δ(13) C and δ(15) N values were compared with those of plant debris, soil, microbial destructors (litter-decomposing, humus-decomposing, and ectomycorrhizal fungi) and members of higher trophic levels (oribatid mites, termites, predatory macroinvertebrates). RESULTS: Eight species of slime molds represented by at least three independent samples were 3-6‰ enriched in (13) C and (15) N relative to plant litter. A small but significant difference in the δ(13) C and δ(15) N values suggests that different species of myxomycetes can differ in feeding behavior. The slime molds were enriched in (15) N compared with litter-decomposing fungi, and depleted in (15) N compared with mycorrhizal or humus-decomposing fungi. Slime mold sporocarps and plasmodia largely overlapped with oribatid mites in the isotopic bi-plot, but were depleted in (15) N compared with predatory invertebrates and humiphagous termites. CONCLUSIONS: A comparison with reference groups of soil organisms suggests strong trophic links of slime molds to saprotrophic microorganisms which decompose plant litter, but not to humus-decomposing microorganisms or to mycorrhizal fungi. Under the assumption that slime molds are primarily feeding on bacteria, the isotopic similarity of slime molds and mycophagous soil animals indicates that saprotrophic soil bacteria and fungi are similar in bulk isotopic composition.


Asunto(s)
Isótopos de Carbono/análisis , Cadena Alimentaria , Mixomicetos/química , Mixomicetos/fisiología , Isótopos de Nitrógeno/análisis , Suelo/parasitología , Bacterias , Biomasa , Cuerpos Fructíferos de los Hongos/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...