Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38003421

RESUMEN

Inherited retinal diseases (IRDs) constitute a prevalent group of inherited ocular disorders characterized by marked genetic diversity alongside moderate clinical variability. Among these, ABCA4-related eye pathology stands as a prominent form affecting the retina. In this study, we conducted an in-depth analysis of 96 patients harboring ABCA4 variants in the European part of Russia. Notably, the complex allele c.[1622T>C;3113C>T] (p.Leu541Pro;Ala1038Val, or L541P;A1038V) and the variant c.5882G>A (p.Gly1961Glu or G1961E) emerged as primary contributors to this ocular pathology within this population. Additionally, we elucidated distinct disease progression characteristics associated with the G1961E variant. Furthermore, our investigation revealed that patients with loss-of-function variants in ABCA4 were more inclined to develop phenotypes distinct from Stargardt disease. These findings provide crucial insights into the genetic and clinical landscape of ABCA4-related retinal dystrophies in this specific population.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Distrofias Retinianas , Humanos , Mutación , Alelos , Transportadoras de Casetes de Unión a ATP/genética , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Fenotipo
2.
Heliyon ; 8(8): e10291, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36051260

RESUMEN

Chordoma associated with tuberous sclerosis complex (TSC) is an extremely rare tumor that was described only in 13 cases since 1975. Сhordoma itself is a malignant slow-growing bone tumor thought to arise from vestigial or ectopic notochordal tissue. Chordoma associated with TSC differs from chordoma in the general pediatric population in the median age, where the diagnosis of TSC-associated chordoma is 6.2 months, whereas for chordoma in the general pediatric population it is set to 12 years. The majority of TSC-associated chordomas are localized in skull-based and sacrum regions, and rare in the spine. Chordomas are genetically heterogeneous tumors characterized by chromosomal instability (CIN), and alterations involving PI3K-AKT signaling pathway genes and chromatin remodeling genes. Here we present the 14th case of chordoma associated with TSC in a 1-year-old pediatric patient. Alongside biallelic inactivation of the TSC1 gene, molecular genetic analysis revealed CIN and involvement of epigenetic regulation genes. In addition, we found the engagement of CBX7 and apolipoprotein B editing complex (APOBEC3) genes that were not yet seen in chordomas before. Amplification of CBX7 may epigenetically silence the CDKN2A gene, whereas amplification of APOBEC3 genes can explain the frequent occurrence of CIN in chordomas. We also found that KRAS gene is located in the region with gain status, which may suggest the ineffectiveness of potential EGFR monotherapy. Thus, molecular genetic analysis carried out in this study broadens the horizons of possible approaches for targeted therapies with potential applications for personalized medicine.

3.
J Pers Med ; 12(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35455757

RESUMEN

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease and its treatment is an urgent problem of rheumatology. Olokizumab (OKZ) is a new humanized monoclonal antibody targeting IL-6 and is one of the few promising drugs for RA therapy. One-hundred-and-twenty-five DNA samples from Russian patients with RA, treated with olokizumab, were genotyped with an NGS panel containing 60 single nucleotide polymorphisms (SNPs) and the whole coding sequences of IL6, IL6R, TNFRSF1A, CTLA4, IL10, IL23R, and PADI4; and by RT-PCR for HLA-DRB1 and HLA-B. Associations of polymorphic variants with olokizumab efficacy according to the scores ACR20, ACR50, and DAS28-CRP were determined. We analyzed the obtained data by using logistic regression, ROC curves, and multivariate ANOVA. A high predictive value of the response to olokizumab therapy at 24 weeks was found for the combination of HLA-DRB1*04 and HLA-B*27 alleles with SNPs located in non-HLA genes (IL1B, IL17A, PADI4, DHODH, GLCCI1, IL23R, and TNFAIP3), and clinical characteristics (age, RA duration, and intensity) according to ACR20. Thus, the comprehensive assessment of polymorphic variants of HLA and non-HLA genes considering population characteristics in combination with clinical parameters allows for the elaboration of an RA prognostic panel.

4.
ACS Biomater Sci Eng ; 8(10): 4175-4184, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34775760

RESUMEN

Bilirubin (BR) is a product of hemoglobin breakdown, and its increasing levels in the blood may indicate liver disorders and lead to jaundice. Kernicterus is most dangerous in newborns when the unconjugated BR concentration can quickly rise to toxic levels, causing neurological damage and even death. The development of an accurate, fast, and sensitive sensor for BR detection will help reduce diagnostic time and ensure successful treatment. In this study, we propose a new method for creating a surface-enhanced Raman scattering (SERS)-active substrate based on gold-decorated silicon nanowires (Au@SiNWs) for sensitive label-free BR detection. Gold-assisted chemical etching of crystalline silicon wafers was used to synthesize SiNWs, the tops of which were then additionally decorated with gold nanoparticles. The low detection limit of model analyte 4-mercaptopyridine down to the concentration of 10-8 M demonstrated the excellent sensitivity of the obtained substrates for SERS application. The theoretical full-wave electromagnetic simulations of Raman scattering in the Au@SiNW substrates showed that the major contribution to the total SERS signal comes from the analyte molecules located on the SiNW surface near the gold nanoparticles. Therefore, for efficient BR adsorption and SERS detection, the surface of the SiNWs was modified with amino groups. Label-free detection of BR using amino modified Au@SiNWs with high point-to-point, scan-to-scan, and batch-to-batch reproducibility with a detection limit of 10-6 M has been demonstrated. Artificial urine, mimicking human urine samples, was used as the matrix to get insights into the influence of different parameters such as matrix complexity on the overall BR SERS signal. The signal stability was demonstrated for 7 days after adsorption of BR with a concentration of 5 × 10-5 M, which is the required sensitivity for clinical applications.


Asunto(s)
Nanopartículas del Metal , Nanocables , Bilirrubina , Oro/química , Hemoglobinas , Humanos , Recién Nacido , Nanocables/química , Reproducibilidad de los Resultados , Silicio/química , Espectrometría Raman/métodos
5.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34680218

RESUMEN

Our aim was to identify RB1 alterations causing hereditary low penetrance retinoblastoma and to evaluate how the parental origin of an RB1 mutation affects its phenotypic expression. By NGS and MLPA, RB1 mutations were found in 191 from 332 unrelated retinoblastoma patients. Among patients with identified RB1 mutations but without clinical family history of retinoblastoma, 7% (12/175) were found to have hereditary disease with one of the parents being an asymptomatic carrier of an RB1 mutation. Additionally, in two families with retinoblastoma history, mutations were inherited by probands from unaffected parents. Overall, nine probands inherited RB1 mutations from clinically unaffected fathers and five, from mothers. Yet, we gained explanations of maternal "unaffectedness" in most cases, either as somatic mosaicism or as clinical presentation of retinomas in involution, rendering the proportion of paternal to maternal truly asymptomatic mutation carriers as 9:1 (p = 0.005). This observation supports an assumption that parental origin of an RB1 mutation influences the likelihood of developing retinoblastoma. Additionally, our study revealed a relatively high frequency of asymptomatic carriage of the RB1 mutations among the parents of retinoblastoma patients, highlighting the utmost necessity of molecular analysis among the probands' relatives irrespective of their clinical status and family history of retinoblastoma.

6.
Cancers (Basel) ; 13(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34572812

RESUMEN

We have performed mutational profiling of 25 genes involved in epigenetic processes on 135 gastric cancer (GC) samples. In total, we identified 79 somatic mutations in 49/135 (36%) samples. The minority (n = 8) of mutations was identified in DNA methylation/demethylation genes, while the majority (n = 41), in histone modifier genes, among which mutations were most commonly found in KMT2D and KMT2C. Somatic mutations in KMT2D, KMT2C, ARID1A and CHD7 were mutually exclusive (p = 0.038). Mutations in ARID1A were associated with distant metastases (p = 0.03). The overall survival of patients in the group with metastases and in the group with tumors with signet ring cells was significantly reduced in the presence of mutations in epigenetic regulation genes (p = 0.036 and p = 0.041, respectively). Separately, somatic mutations in chromatin remodeling genes correlate with low survival rate of patients without distant metastasis (p = 0.045) and in the presence of signet ring cells (p = 0.0014). Our results suggest that mutations in epigenetic regulation genes may be valuable clinical markers and deserve further exploration in independent cohorts.

7.
J Pers Med ; 11(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070522

RESUMEN

Rheumatoid arthritis (RA) is a multifactorial disease caused by a genetic predisposition and environmental factors. Predisposing alleles of various genes have a relatively small influence on the disease risk when they appear separately, but in combination, they predispose an individual to RA development. We genotyped 125 patients with RA including 60 SNPs and sequenced coding part of six genes by next-generation sequencing (NGS) technology on a target panel (IAD177464_185). According to our data, the alleles HLA-DRB1*04, HLA-DRB1*01, HLA-B*27, PTPN22 (rs2476601), TNF (rs1800629), TPMT (rs2842934), and IL4 (rs2243250), and genotypes HLA-DRB1*04:04, HLA-DRB1*01:16, PTPN22 (rs2476601), TPMT (rs2842934), were significantly associated with the RA development. Associations with clinical criteria (DAS28-CRP, HAQ-DI, and CDAI) and biochemical factors were investigated. We have shown that the PADI4 genotypes (rs11203367, rs2240340, rs11203366, and rs874881) are significantly associated with the baseline levels of DAS28-CRP, HAQ-DI, and CDAI; genotypes IL23R (rs7530511) and TNFRSF1A (rs748004, rs2228144) with the level of anti citrullinated peptide antibodies (ACPA); the genotypes DHODH (rs3213422) and MTHFR (rs180113) with the concentration of C-reactive protein (CRP); and the genotypes IL2RA (rs2104286), IRAK3 (rs11541076), and IL4R (rs1801275) with the level of rheumatoid factor (RF). Application of targeted NGS panel contributes to expanded genotyping to identify risk groups among the RA patients.

9.
J Pers Med ; 10(4)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142700

RESUMEN

Rheumatoid arthritis (RA) is the most common autoimmune disease worldwide. Epigenetic alternations of microRNAs (miRNAs) can contribute to its pathogenesis and progression. As the first line therapy with DMARDs is not always successful, other drugs and therapeutic targets should be applied. This study aims to measure the expression level of plasma miRNAs in RA patients treated with olokizumab and to evaluate their potential as prognostic biomarkers. The expression of 9 miRNAs was quantified in 103 RA patients before treatment and at weeks 12 and 24 of olokizumab therapy by reverse transcription-polymerase chain reaction (RT-PCR) assay and analyzed in groups of responders and non-responders. Almost all miRNAs changed their expression during therapy. The ROC curve analysis of the most prominent of them together with consequent univariate and multivariate regression analysis revealed statistically significant associations with the olokizumab therapy efficiency scores for miR-26b, miR-29, miR-451, and miR-522. Therefore, these miRNAs might be a potential therapeutic response biomarker.

10.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664585

RESUMEN

Rheumatoid arthritis (RA) is the most common inflammatory arthropathy worldwide. Possible manifestations of RA can be represented by a wide variability of symptoms, clinical forms, and course options. This multifactorial disease is triggered by a genetic predisposition and environmental factors. Both clinical and genealogical studies have demonstrated disease case accumulation in families. Revealing the impact of candidate gene missense variants on the disease course elucidates understanding of RA molecular pathogenesis. A multivariate genomewide association study (GWAS) based analysis identified the genes and signalling pathways involved in the pathogenesis of the disease. However, these identified RA candidate gene variants only explain 30% of familial disease cases. The genetic causes for a significant proportion of familial RA have not been determined until now. Therefore, it is important to identify RA risk groups in different populations, as well as the possible prognostic value of some genetic variants for disease development, progression, and treatment. Our review has two purposes. First, to summarise the data on RA candidate genes and the increased disease risk associated with these alleles in various populations. Second, to describe how the genetic variants can be used in the selection of drugs for the treatment of RA.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/genética , Polimorfismo Genético , Alelos , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Citocinas/genética , Progresión de la Enfermedad , Resistencia a Medicamentos , Femenino , Genes MHC Clase I , Genes MHC Clase II , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Terapia Molecular Dirigida , Polimorfismo de Nucleótido Simple , Pronóstico , Receptores de Citocinas/genética , Riesgo , Transducción de Señal/genética
11.
Sci Rep ; 10(1): 504, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949278

RESUMEN

Somatic mutation profiling in gastric cancer (GC) enables main driver mutations to be identified and their clinical and prognostic value to be evaluated. We investigated 77 tumour samples of GC by next-generation sequencing (NGS) with the Ion AmpliSeq Hotspot Panel v2 and a custom panel covering six hereditary gastric cancer predisposition genes (BMPR1A, SMAD4, CDH1, TP53, STK11 and PTEN). Overall, 47 somatic mutations in 14 genes were detected; 22 of these mutations were novel. Mutations were detected most frequently in the CDH1 (13/47) and TP53 (12/47) genes. As expected, somatic CDH1 mutations were positively correlated with distant metastases (p = 0.019) and tumours with signet ring cells (p = 0.043). These findings confirm the association of the CDH1 mutations with diffuse GC type. TP53 mutations were found to be significantly associated with a decrease in overall survival in patients with Lauren diffuse-type tumours (p = 0.0085), T3-T4 tumours (p = 0.037), and stage III-IV tumours (p = 0.013). Our results confirm that the detection of mutations in the main driver genes may have a significant prognostic value for GC patients and provide an independent GC-related set of clinical and molecular genetic data.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Análisis de Secuencia de ADN , Neoplasias Gástricas/genética , Análisis de Supervivencia
12.
Front Genet ; 10: 570, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258550

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world's population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.

13.
Cells ; 8(3)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823485

RESUMEN

HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.


Asunto(s)
Estrés Oxidativo , Vacunas de ADN/inmunología , Proteínas del Núcleo Viral/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Células HEK293 , Humanos , Inmunidad Celular , Inmunización , Interferón gamma/biosíntesis , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Mutantes/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas del Núcleo Viral/química
14.
Genes Chromosomes Cancer ; 57(1): 42-47, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960585

RESUMEN

Glioblastoma is the most frequent and aggressive brain tumor in the adult population. Loss of heterozygosity (LOH) at markers of the long arm of chromosome 10 is the most common genetic alteration in glioblastoma, being detectable in up to 80% of cases. We have tested 124 glioblastoma samples for LOH by microsatellite analysis of the 10q23.3-26.3 region which contains the cancer related genes PTEN, FGFR2, MKI67, and MGMT. Then, a real-time quantitative microsatellite analysis (QuMA) was used to qualitatively estimate the change in copy number of this region in the samples with LOH. LOH was detected in 62.1% of the glioblastoma samples. A total of 64 samples with LOH in this region were examined by QuMA. LOH was attributed to a deletion in 37.5% of cases, and uniparental disomy (UPD) in 25% of cases. In 37.5% of cases, deletion and UPD segments alternated within the region: deletions being more frequent than UPD in its proximal part (encompassing PTEN and FGFR2) and both deletions and UPD occurring at the same frequency in its distal part (MGMT). Thus, we have investigated mechanisms of structural alterations of the chromosome region 10q23.3-26.3 in glioblastoma. In addition to a structural deletion of this region, UPD was identified as a frequent cause of LOH. We resume that more detailed studies of glioblastoma at the molecular genetic level are essential in search for potential markers suitable for predicting the disease outcome and the response to treatment.


Asunto(s)
Neoplasias Encefálicas/genética , Cromosomas Humanos Par 10/genética , Glioblastoma/genética , Disomía Uniparental , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/patología , Heterocigoto , Humanos , Antígeno Ki-67/genética , Fosfohidrolasa PTEN/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Supresoras de Tumor/genética
15.
Tumour Biol ; 37(7): 9899-907, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26813565

RESUMEN

The renal cell carcinoma is the ninth most common cancer with an increasing occurrence and mortality. Recoverin is the first retina-specific photoreceptor protein that was shown to undergo aberrant expression, due to its promoter demethylation, as a cancer-retina antigen in a number of malignant tumors. In this work, we demonstrated that recoverin is indeed expressed in 68.4 % of patients with different subtypes of renal cell carcinoma, and this expression has tendency to correlate with tumor size. Interestingly, 91.7 % of patients with the benign renal tumor, oncocytoma, express recoverin as well in their tumor. Epigenetic analysis of the recoverin gene promoter revealed a stable mosaic methylation pattern with the predominance of the methylated state, with the exception of -80 and 56 CpG dinucleotides (CpGs). While the recoverin expression does not correlate withoverall survival of the tumor patients, the methylation of the recoverin gene promoter at -80 position is associated with better overall survival of the patients. This work is the first report pointing towards the association of overall survival of renal cell carcinoma (RCC) patients with promoter methylation of a cancer-retina antigen. Taken together, these data allow to consider recoverin as a potential therapeutic target and/or marker for renal tumors.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Papilar/patología , Carcinoma de Células Renales/patología , Metilación de ADN , Neoplasias Renales/patología , Recoverina/metabolismo , Anciano , Biomarcadores de Tumor/genética , Western Blotting , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Recoverina/genética , Tasa de Supervivencia
16.
Viruses ; 7(6): 2745-70, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26035647

RESUMEN

Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGF\(\upbeta\)1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37-191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1\(\upalpha\). The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein.


Asunto(s)
Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Estrés Oxidativo , Proteínas del Núcleo Viral/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Análisis Mutacional de ADN , Humanos , Peróxido de Hidrógeno/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocondrias/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
17.
Biochem Biophys Res Commun ; 451(2): 252-7, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25086358

RESUMEN

A new defensin Lc-def, isolated from germinated seeds of the lentil Lens culinaris, has molecular mass 5440.4Da and consists of 47 amino acid residues. Lc-def and its (15)N-labeled analog were overexpressed in Escherichia coli. Antimicrobial activity of the recombinant protein was examined, and its spatial structure, dynamics, and interaction with lipid vesicles were studied by NMR spectroscopy. It was shown that Lc-def is active against fungi, but does not inhibit the growth of Gram-positive and Gram-negative bacteria. The peptide is monomeric in aqueous solution and contains one α-helix and triple-stranded ß-sheet, which form cysteine-stabilized αß motif (CSαß) previously found in other plant defensins. The sterically neighboring loop1 and loop3 protrude from the defensin core and demonstrate significant mobility on the µs-ms timescale. Lc-def does not bind to the zwitterionic lipid (POPC) vesicles but interacts with the partially anionic (POPC/DOPG, 7:3) membranes under low-salt conditions. The Lc-def antifungal activity might be mediated through electrostatic interaction with anionic lipid components of fungal membranes.


Asunto(s)
Defensinas/química , Lens (Planta)/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Defensinas/genética , Defensinas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lens (Planta)/genética , Lens (Planta)/metabolismo , Lípidos de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Neurospora crassa/efectos de los fármacos , Neurospora crassa/crecimiento & desarrollo , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática
18.
Genet Vaccines Ther ; 7: 7, 2009 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-19505299

RESUMEN

BACKGROUND: Hepatitis C core protein is an attractive target for HCV vaccine aimed to exterminate HCV infected cells. However, although highly immunogenic in natural infection, core appears to have low immunogenicity in experimental settings. We aimed to design an HCV vaccine prototype based on core, and devise immunization regimens that would lead to potent anti-core immune responses which circumvent the immunogenicity limitations earlier observed. METHODS: Plasmids encoding core with no translation initiation signal (pCMVcore); with Kozak sequence (pCMVcoreKozak); and with HCV IRES (pCMVcoreIRES) were designed and expressed in a variety of eukaryotic cells. Polyproteins corresponding to HCV 1b amino acids (aa) 1-98 and 1-173 were expressed in E. coli. C57BL/6 mice were immunized with four 25-microg doses of pCMVcoreKozak, or pCMV (I). BALB/c mice were immunized with 100 microg of either pCMVcore, or pCMVcoreKozak, or pCMVcoreIRES, or empty pCMV (II). Lastly, BALB/c mice were immunized with 20 microg of core aa 1-98 in prime and boost, or with 100 microg of pCMVcoreKozak in prime and 20 microg of core aa 1-98 in boost (III). Antibody response, [3H]-T-incorporation, and cytokine secretion by core/core peptide-stimulated splenocytes were assessed after each immunization. RESULTS: Plasmids differed in core-expression capacity: mouse fibroblasts transfected with pCMVcore, pCMVcoreIRES and pCMVcoreKozak expressed 0.22 +/- 0.18, 0.83 +/- 0.5, and 13 +/- 5 ng core per cell, respectively. Single immunization with highly expressing pCMVcoreKozak induced specific IFN-gamma and IL-2, and weak antibody response. Single immunization with plasmids directing low levels of core expression induced similar levels of cytokines, strong T-cell proliferation (pCMVcoreIRES), and antibodies in titer 103(pCMVcore). Boosting with pCMVcoreKozak induced low antibody response, core-specific T-cell proliferation and IFN-gamma secretion that subsided after the 3rd plasmid injection. The latter also led to a decrease in specific IL-2 secretion. The best was the heterologous pCMVcoreKozak prime/protein boost regiment that generated mixed Th1/Th2-cellular response with core-specific antibodies in titer >or= 3 x 10(3). CONCLUSION: Thus, administration of highly expressed HCV core gene, as one large dose or repeated injections of smaller doses, may suppress core-specific immune response. Instead, the latter is induced by a heterologous DNA prime/protein boost regiment that circumvents the negative effects of intracellular core expression.

19.
Mol Immunol ; 43(12): 1941-52, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16442623

RESUMEN

Envelope protein E2 of human hepatitis C virus (HCV) is an attractive component of a prototype HCV vaccine. Delivered by DNA immunogens, E2 evokes specific immune response of Th1-type, failing to induce either considerable antibody production, or T-helper cell proliferation. We aimed at modulating the immunogenic performance of E2 gene by changing the mode of protein expression in eukaryotic cells. Plasmids were constructed encoding full-length E2 and nonstructural protein 1 (p7) fused to either 13 or 38 C-terminal amino acids (aa) of HCV E1 that contain second hydrophobic segment of E1 stop-transfer signal, or a complete E1 stop-transfer signal with duplicated second hydrophobic segment. Injected into BALB/c mice, E2/p7 genes induced potent antibody and T-helper cell response targeted against hypervariable region 1, aa 472-586 of E2, and a novel epitope at aa 774-796 of p7. Profile of cytokines secreted by proliferating mouse splenocytes stimulated in vitro with E2- and p7-derived peptides, indicated mixed Th1/Th2 type of immune response. Thus, the full-length E2 and p7 genes supplied in one cassette were both immunogenic. E2/p7 containing a complete E1 stop-transfer signal with prolonged membrane spanning domain was superior to the shorter E2/p7 version in terms of both antibody and cellular immunogenicity. Optimal performance of HCV E2 could thus be achieved without the aid of external/heterologous signals by easing, through modification of the E2 signal sequence, the release of E2 from the rough ER while retaining full-length E2 and p7 sequences. This finding may help to improve the Th2 performance of HCV envelope genes as prototype vaccines.


Asunto(s)
Genes Virales , Hepacivirus/inmunología , Señales de Clasificación de Proteína/fisiología , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular Transformada , Transformación Celular Viral , Chlorocebus aethiops , Escherichia coli/genética , Variación Genética , Células HeLa , Hepacivirus/genética , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Plásmidos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...