Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(1): 144-158, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051113

RESUMEN

Computational investigation at the BHandHLYP/6-311+G(d,p) level of theory of the gas-phase tautomerism of 2- and 4-pyridones confirmed the slight prevalence of lactim in the case of the former, but its dominance in the case of the latter, as shown previously. Examination of aromaticity by using HOMA, EDDB, NBOdel, NICS and AICD led to the conclusion that tautomerization of 4-pyridone results in greater aromaticity gain. It is also driven by the Pauli repulsion relief, which was revealed by the tautomerization energy decomposition analysis. By contrast, in the case of 2-pyridone, lactim is favoured by orbital and electrostatic interactions and disfavoured by the Pauli repulsion. Aromaticity gain in this case is smaller. The position of the tautomeric equilibrium can be modulated by substituent inductive effects (Cl and F), inductive and resonance effects (NH2 and NO2), hydrogen bonding (NO2), and medium polarity, the increase of which increases lactam population.

2.
Org Biomol Chem ; 21(6): 1187-1205, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36648494

RESUMEN

We present the green, highly atom-economical, solid-state silica gel-catalyzed synthesis of polysubstituted 1,4- and 1,2-dihydropyridines (DHPs) from commercially available materials, amines and ethyl propiolate. The DHP skeleton was assembled by heating the reactants and silica gel in a closed vessel. Aliphatic amines provided 1,4-isomers as the main or only DHP products, but the reactions of aromatic amines yielded a mixture of 1,4- and 1,2-isomers. To the best of our knowledge, this is the first example of the formation of a 1,2-DHP structure by the reaction of an amine with propiolic ester. Addition of 1 mass percent of H2SO4 to silica gel shifted the product distribution to 1,4-DHP as the main or the only isomer obtained. Experimental and theoretical analyses led to the identification of two key intermediates en route to DHPs and the explanation of the observed regioisomeric ratios. 1,2-DHPs show blue-cyan fluorescence in MeOH with the quantum yield Φ = 0.10-0.22 relative to quinine sulfate Φ = 0.58 and 1,4-DHPs show blue-violet fluorescence with Φ = 0.09-0.81.

3.
Cancer Cell Int ; 22(1): 376, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457029

RESUMEN

BACKGROUND: Colon cancer is often driven by mutations of the adenomatous polyposis coli (APC) gene, an essential tumor suppressor gene of the Wnt ß-catenin signaling pathway. APC and its cytoplasmic interactions have been well studied. However, various groups have also observed its presence in the nucleus. Identifying novel interactions of APC in the Wnt pathway will provide an opportunity to understand APC's nuclear role better and ultimately identify potential cancer treatment targets. METHODS: We used the all-vs-all sequencing (AVA-Seq) method to interrogate the interactome of protein fragments spanning most of the 60 Wnt ß-catenin pathway proteins. Using protein fragments identified the interacting regions between the proteins with more resolution than a full-length protein approach. Pull-down assays were used to validate a subset of these interactions. RESULTS: 74 known and 703 novel Wnt ß-catenin pathway protein-protein interactions were recovered in this study. There were 8 known and 31 novel APC protein-protein interactions. Novel interactions of APC and nuclear transcription factors TCF7, JUN, FOSL1, and SOX17 were particularly interesting and confirmed in validation assays. CONCLUSION: Based on our findings of novel interactions between APC and transcription factors and previous evidence of APC localizing to the nucleus, we suggest APC may compete and repress CTNNB1. This would occur through APC binding to the transcription factors (JUN, FOSL1, TCF7) to regulate the Wnt signaling pathway including through enhanced marking of CTNNB1 for degradation in the nucleus by APC binding with SOX17. Additional novel Wnt ß-catenin pathway protein-protein interactions from this study could lead researchers to novel drug designs for cancer.

4.
Cancer Med ; 11(24): 4989-5000, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35567389

RESUMEN

OBJECTIVE: Identify protein contact points between TP53 and minichromosome maintenance (MCM) complex proteins 2, 3, and 5 with high resolution allowing for potential novel Cancer drug design. METHODS: A next-generation sequencing-based protein-protein interaction method developed in our laboratory called AVA-Seq was applied to a gold-standard human protein interaction set. Proteins including TP53, MCM2, MCM3, MCM5, HSP90AA1, PCNA, NOD1, and others were sheared and ligated into the AVA-Seq system. Protein-protein interactions were then identified in both mild and stringent selective conditions. RESULTS: Known interactions among MCM2, MCM3, and MCM5 were identified with the AVA-Seq system. The interacting regions detected between these three proteins overlap with the structural data of the MCM complex, and novel domains were identified with high resolution determined by multiple overlapping fragments. Fragments of wild type TP53 were shown to interact with MCM2, MCM3, and MCM5, and details on the location of the interactions were provided. Finally, a mini-network of known and novel cancer protein interactions was provided, which could have implications for fundamental changes in multiple cancers. CONCLUSION: We provide a high-resolution mini-interactome that could direct novel drug targets and implicate possible effects of specific cancer mutations.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma , Proteína p53 Supresora de Tumor , Humanos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteínas de Mantenimiento de Minicromosoma/clasificación , Proteínas de Mantenimiento de Minicromosoma/genética , Neoplasias , Diseño de Fármacos
5.
Proteins ; 90(4): 959-972, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850971

RESUMEN

Protein-protein interactions (PPIs) are essential in understanding numerous aspects of protein function. Here, we significantly scaled and modified analyses of the recently developed all-vs-all sequencing (AVA-Seq) approach using a gold-standard human protein interaction set (hsPRS-v2) containing 98 proteins. Binary interaction analyses recovered 20 of 47 (43%) binary PPIs from this positive reference set (PRS), comparing favorably with other methods. However, the increase of 20× in the interaction search space for AVA-Seq analysis in this manuscript resulted in numerous changes to the method required for future use in genome-wide interaction studies. We show that standard sequencing analysis methods must be modified to consider the possible recovery of thousands of positives among millions of tested interactions in a single sequencing run. The PRS data were used to optimize data scaling, auto-activator removal, rank interaction features (such as orientation and unique fragment pairs), and statistical cutoffs. Using these modifications to the method, AVA-Seq recovered >500 known and novel PPIs, including interactions between wild-type fragments of tumor protein p53 and minichromosome maintenance complex proteins 2 and 5 (MCM2 and MCM5) that could be of interest in human disease.


Asunto(s)
Genoma , Proteínas , Humanos , Proteínas/metabolismo
6.
Chem Asian J ; 17(4): e202101261, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34964285

RESUMEN

By employing density functional theory (DFT) calculations we show that mono- and disilicon substitution in polycyclic aromatic hydrocarbons, having two to four benzene units, quenches their triplet state antiaromaticity by creating Hückel aromatic (poly)benzenoid subunit(s) and weakly antiaromatic, or almost nonaromatic silacycle. Therefore, such systems are predicted to be globally aromatic in both the ground state and the first excited triplet state. Putting the silicon atom(s) into various positions of a hydrocarbon provides an opportunity to tune the singlet-triplet energy gaps. They depend on the global aromaticity degree which, in turn, depends on the type of aromatic carbocyclic subunit(s) and the extent of their aromaticity. On the basis of the set of studied compounds, some preliminary rules on how to regulate the extent of global, semiglobal and local aromaticity are proposed. The results of this work extend the importance of Hückel aromaticity concept to excited triplet states which are usually characterized by the Baird type of (anti)aromaticity.

7.
Chem Asian J ; 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29757499

RESUMEN

We present an efficient, simple, metal- and solvent-free silica-gel-promoted synthesis of functionalized conjugated dienes by sequential aza-Michael/Michael reactions by starting from commercially available primary amines and propiolic esters. The scope and usefulness of the method is demonstrated for 31 examples, including a range of propiolic esters, aliphatic amines, and differently substituted aromatic amines. For aliphatic amines, the products were obtained within 0.5 to 4 h in 52 to 85 % yield, compared with 3.5 to 22 h under classical solution-phase synthesis, which proceeds with similar or lower yields. The method was found to be particularly useful for weakly nucleophilic aromatic amines, which provided products in 21 to 73 % yield over 2.5 to 9.5 h compared with yields of 0 to 49 % over 1 to 6 d under standard solution-phase conditions, and for more hydrophobic esters that gave products in yields of 47 to 79 % over 1 to 3 h compared with 0 to 45 % over 4 to 114 h in solvent.

8.
J Org Chem ; 80(20): 10197-207, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26378891

RESUMEN

The well-known gauche preference in FCCX systems, where X is an electronegative element from Period 2, is widely exploited in synthetic, medicinal, and material chemistry. It is rationalized on the basis of σ(C-H) → σ*(C-F) hyperconjugation and electrostatic interactions. The recent report (Thiehoff, C.; et al. Chem. Sci. 2015, 6, 3565) showed that the fluorine gauche effect can extend to Period 3 elements, such as sulfur. The aim of the present work is to disclose factors governing conformational behavior of FCCS containing systems. We examine conformational preferences in seven classes of compounds by ab initio and DFT calculations and rationalize the results by quantitatively decomposing the anti/gauche isomerization energy into contributions from electrostatic, orbital, dispersion, and Pauli interactions, and energy spent on structural changes. The results show that the fluorine/sulfur gauche effect is primarily electrostatic (63-75%), while all orbital interactions contribute 22-41% to stabilizing interactions. Stereoelectronic effects, involved in orbital interactions, also play a role in gauche conformer stabilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...