Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1266353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090149

RESUMEN

Introduction: Galactosemia is an inherited disorder caused by mutations in the three genes that encode enzymes implicated in galactose catabolism. Currently, the only available treatment for galactosemia is life-long dietary restriction of galactose/lactose, and despite treatment, it might result in long-term complications. Methods: Here, we present five cases of newborn patients with elevated galactose levels, identified in the context of the newborn screening program. Genetic analysis concerned a next generation sequencing (NGS) methodology covering the exons and adjacent splice regions of the GALT, GALK1, and GALE genes. Results: Our approach led to the identification of eight rare nonsynonymous DNA variants. Four of these variants, namely, p.Arg204Gln and p.Met298Ile in GALT, p.Arg68Leu in GALK1, and p.Ala180Thr in GALE, were already recorded in relevant databases, yet their clinical significance is uncertain. The other four variants, namely, p.Phe245Leu in GALT, p.Gly193Glu in GALK1, and p.Ile266Leu and p.Ala216Thr in the GALE gene, were novel. In silico analysis of the possible effect of these variants in terms of protein function and stability was performed using a series of bioinformatics tools, followed by visualization of the substituted amino acids within the protein molecule. The analysis revealed a deleterious and/or destabilizing effect for all the variants, supported by multiple tools in each case. Discussion: These results, given the extreme rarity of the variants and the specific phenotype of the respective cases, support a pathogenic effect for each individual variant. Altogether, our study shows that targeted NGS methodologies may offer a time- and cost-effective approach for the genetic investigation of galactosemia and can assist in elucidating the complex genetic background of this disorder.

2.
Curr Issues Mol Biol ; 45(5): 4135-4150, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232732

RESUMEN

(1) Background: Myelodysplastic neoplasms (MDSs) consist of a group of blood malignancies with a complex biological background. In this context, we investigated the role of autophagy and apoptosis in the pathogenesis and progression of MDSs. (2) Methods: To address this issue, we performed a systematic expression analysis on a total of 84 genes in patients with different types of MDSs (low/high risk of malignancy) versus healthy individuals. Furthermore, real-time quantitative PCR (qRT-PCR) was used to validate significantly upregulated or downregulated genes in a separate cohort of MDS patients and healthy controls. (3) Results: MDS patients were characterized by lower expression levels for a large series of genes involved in both processes compared to healthy individuals. Of importance, deregulation was more pronounced in patients with higher-risk MDS. Results from the qRT-PCR experiments displayed a high level of concordance with the PCR array, strengthening the relevance of our findings. (4) Conclusions: Our results indicate a clear effect of autophagy and apoptosis on MDS development, which becomes more pronounced as the disease progresses. The results from the present study are expected to assist in our understanding of the biological background of MDSs as well as in the identification of novel therapeutic targets.

3.
Cleft Palate Craniofac J ; 55(8): 1092-1102, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29561715

RESUMEN

INTRODUCTION: Craniosynostosis, the premature fusion of cranial sutures, is usually divided into 2 major categories: syndromic and nonsyndromic. Mutations in the FGFR1, FGFR2, FGFR3, TWIST1, and EFNB1 genes cause the common craniosynostosis syndromes Muenke, Crouzon and Crouzon with acanthosis nigricans, Apert, Pfeiffer, Saethre-Chotzen, and Craniofrontonasal. Overlapping features among craniosynostosis syndromes, phenotypic heterogeneity even within the same syndrome, especially in the case of Muenke syndrome, and inadequate clinical evaluation can lead to misdiagnosis, which molecular testing can help clarify. OBJECTIVE: The aim of this study is to investigate the underlying genetic cause in 46 patients with syndromic or nonsyndromic craniosynostosis by direct sequencing and/or microdeletion/microduplication analysis of the FGFR1-3, TWIST1, and EFNB1 genes. RESULTS: Genetic analysis identified 3 novel mutations, c.413T>C - p.(Leu138Pro) [p.(L138P)] in TWIST1, the previously reported c.373G>A - p.(Glu125Lys) [p.(E125K)], and c.717dupA - p.(Leu240IlefsTer79) [p.(L240fs)] mutation in EFNB1 gene as well as 6 previously known mutations and a heterozygous TWIST1 gene deletion. The 2 novel mutations within EFNB1 gene arose de novo, but the novel mutation p.(L138P) within TWIST1 gene was inherited from the patient's father, who was found to be mosaic for the mutation. To our knowledge, this is the first case of mosaicism described for TWIST1 gene. CONCLUSIONS: The contribution of molecular genetic analysis to the diagnosis of patients with syndromic craniosynostosis was useful because some were originally misdiagnosed. Conversely, thorough clinical evaluation can guide molecular testing and result in a correct diagnosis.

4.
Cleft Palate Craniofac J ; 49(1): 109-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21385071

RESUMEN

Craniofrontonasal syndrome is mainly characterized by frontonasal dysplasia, telorbitism, a broad nasal root, and frequently a bifid nose and coronal craniosynostosis. Craniofrontonasal syndrome is an X-linked disorder with an unusual pattern of inheritance because heterozygous females are more severely affected than hemizygous males. The craniofrontonasal syndrome-causing gene is EFNB1, localized in the border region of chromosome Xq12 and Xq13.1, encoding for protein ephrin-B1. Here we aim to investigate the underlying genetic defect of a young girl with craniofrontonasal syndrome. The patient underwent surgical correction of her craniofacial deformities. Genetic analysis was carried out by polymerase chain reaction. Products of exon 2 of the EFNB1 gene were sequenced as well as digested with BpmI enzyme. A novel de novo missense mutation 373G>A was identified within the EFNB1 gene, leading to the replacement of glutamic acid at amino acid position 125 with lysine. The replacement of Glu125 with Lys, which lies within the G-H loop, part of the dimerization ligand-receptor interface, is expected to disrupt the interaction between the Eph receptor and ephrin B1 ligand, thus leading to craniofrontonasal syndrome.


Asunto(s)
Anomalías Craneofaciales/genética , Efrina-B1/genética , Adolescente , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/cirugía , Exones , Femenino , Humanos , Imagenología Tridimensional , Mutación , Análisis de Secuencia de ADN , Síndrome , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...