RESUMEN
Astroglia play crucial neuroprotective roles by internalizing pathogenic aggregates and facilitating their degradation. Here, we show that α-SYN protofibril-induced organelle toxicities and reactive oxygen species (ROS) cause premature cellular senescence in astrocytes and astrocyte-derived cancer cells, resulting in a transient increase in the biogenesis of tunneling nanotubes (TNTs). TNT-biogenesis and TNT-mediated cell-to-cell transfer lead to clearance of α-SYN-induced organelle toxicities, reduction in cellular ROS levels, and reversal of cellular senescence. Enhanced cell proliferation is seen in the post-recovered cells after recovering from α-SYN-induced organelle toxicities. Further, we show that α-SYN-induced senescence promotes the transient localization of focal adhesion kinase (FAK) in the nucleus. FAK-mediated regulation of Rho-associated kinases plays a significant role in the biogenesis of TNTs and their subsequent proliferation. Our study emphasizes that TNT biogenesis has a potential role in the clearance of α-SYN-induced cellular toxicities, the consequences of which cause enhanced proliferation in the post-recovered astroglia cells.
RESUMEN
The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in â¼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations.
Asunto(s)
Nacimiento Prematuro , Masculino , Femenino , Humanos , Recién Nacido , Preescolar , Niño , Cognición , Encéfalo/diagnóstico por imagen , Neuroimagen , Imagen por Resonancia MagnéticaRESUMEN
The mammalian gut microbiome influences numerous developmental processes. In human infants it has been linked with cognition, social skills, hormonal responses to stress, and brain connectivity. Yet, these associations are not necessarily causal. The present study tested whether two microbial stool communities, common in human infants, affected behavior, myelination, dendritic morphology, and spine density when used to colonize mouse models. Humanized animals were more like specific-pathogen free mice than germ-free mice for most phenotypes, although in males, both humanized groups were less social. Both humanized groups had thinner myelin sheaths in the hippocampus, than did germ-free animals. Humanized animals were similar to each other except for dendritic morphology and spine density where one group had greater dendritic length in the prefrontal cortex, greater dendritic volume in the nucleus accumbens, and greater spine density in both regions, compared to the other. Results add to a body of literature suggesting the gut microbiome impacts brain development. Teaser: Fecal transplants from human infants with highly abundant Bifidobacterium , an important inhabitant of the intestinal tract of breastfed newborns, may promote brain connectivity in mice.
RESUMEN
Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are regulated by dynamic gene expression patterns that likely play an important role in establishing an individual's risk for later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established to facilitate large-scale imaging genetics studies in infancy and early childhood.
Asunto(s)
Encéfalo , Trastornos Mentales , Femenino , Embarazo , Preescolar , Humanos , Encéfalo/diagnóstico por imagen , Trastornos Mentales/genética , Neuroimagen/métodos , FenotipoRESUMEN
Flavonoids are an important class of natural polyphenolic compounds reported to exert beneficial effects in cardiovascular and metabolic diseases, cancer, autoimmune and neurological disorders. Flavonoids possess potential antioxidant, anti-inflammatory, antiapoptotic and immuno-modulation properties. Intriguingly, the importance of flavonoids in different neurological disorders is gaining more attention due to the safety, better pharmacokinetic profile and blood-brain barrier penetration, cost-effectiveness and readiness for clinical uses/trials. Many in vitro and in vivo research studies have established the neuroprotective mechanism of flavonoids in the central nervous system (CNS) diseases. The present review summarizes the benefits of various classes of flavonoids (flavones, flavonols, flavanones, anthocyanidins, isoflavones, flavanols), chemical nature, classification, their occurrence and distribution, pharmacokinetics and bioavailability. The manuscript also presents available evidences relating to the role of flavonoids in regulating key signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, mitogen-activated protein kinase (MAPK) pathway, Janus kinase and signal transducer and activator of transcription proteins (JAK/STAT) pathway, Toll-like receptors (TLR) pathway, nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and cAMP response element-binding protein (CREB) pathway involved in neuroinflammation associated with major neurological disorders. Literature search was conducted using electronic databases like Google Scholar, Scopus, PubMed central, Springer search and Web of science. Chemical structures used in the present analysis were drawn using Chemdraw Professional 15.0 software. This collective information provides comprehensive knowledge on disease pathways and therapeutic benefits of flavonoids in neurological disorders, druggability and future scope for research.
Asunto(s)
Flavonoides , Enfermedades Neuroinflamatorias , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoles/farmacología , Humanos , FN-kappa B/metabolismo , Transducción de SeñalRESUMEN
Sex differences in the human brain emerge as early as mid-gestation and have been linked to sex hormones, particularly testosterone. Here, we analyzed the influence of markers of early sex hormone exposure (polygenic risk score (PRS) for testosterone, salivary testosterone, number of CAG repeats, digit ratios, and PRS for estradiol) on the growth pattern of cortical surface area in a longitudinal cohort of 722 infants. We found PRS for testosterone and right-hand digit ratio to be significantly associated with surface area, but only in females. PRS for testosterone at the most stringent P value threshold was positively associated with surface area development over time. Higher right-hand digit ratio, which is indicative of low prenatal testosterone levels, was negatively related to surface area in females. The current work suggests that variation in testosterone levels during both the prenatal and postnatal period may contribute to cortical surface area development in female infants.
Asunto(s)
Dedos , Hormonas Esteroides Gonadales , Estradiol/farmacología , Femenino , Humanos , Lactante , Masculino , Embarazo , Caracteres Sexuales , TestosteronaRESUMEN
SUMMARY: We describe a case of an infant who presented with clinical features of hyperthyroidism. The child was found to be tachycardic, hypertensive and diaphoretic, she was noted to have poor weight gain and difficulty in sleeping. The child was admitted to the pediatric intensive care unit for care. She was found to have biochemical evidence of hyperthyroidism with positive thyroid stimulating immunoglobulin. She responded well to methimazole and propranolol and had a remarkable recovery. She is the youngest patient to be diagnosed with Graves disease in the English literature, at 12 months of life. LEARNING POINTS: Hyperthyroidism must always be considered even at very young age, for patient presenting with poor weight gain and hyperdynamic state. Autoimmune diseases are becoming more common in infancy. Craniosynostosis and increased height for age are well-documented consequences of untreated hyperthyroidism in developing children.
RESUMEN
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with impairments in social communication, restricted, repetitive and stereotyped behaviors. Both genetic and environmental factors are known to contribute toward pathophysiology of Autism. Environmental influences on gene expression can be mediated by methylation patterns which are established and maintained by DNA methyltransferases. Several studies in the past have investigated the role of global methylations in Autism. The present study is aimed to investigate the role of genetic variations in the DNA methyltransferase which might be critical in defining the threshold for environmental factors toward susceptibility to autism. Polymorphisms in DNA methyltransferases, DNMT1, DNMT3A, DNMT3B, and DNMT3L were screened for association with ASD in 180 autistic patients and 260 healthy controls from a south Indian population. DNMT1 rs10418707 and rs10423341, and DNMT3A rs2289195 were found to be significantly associated at genotypic and allelic level with ASD. Functional prediction indicates that these SNPs have a role in transcriptional regulation and increased expression, indicating that hypermethylation might be induced by its genotype status. The study might reflect the role of genetics variants in DNMTs in defining the threshold of environmental impact in influencing the disease or phenotype variations in ASD. © 2019 IUBMB Life, 2019.
Asunto(s)
Trastorno del Espectro Autista/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Regulación de la Expresión Génica , Polimorfismo de Nucleótido Simple/genética , Trastorno del Espectro Autista/patología , Estudios de Casos y Controles , ADN Metiltransferasa 3A , Epigénesis Genética , Femenino , Genotipo , Humanos , MasculinoRESUMEN
BACKGROUND: In schizophrenia, genetic background may provide a substrate for intrinsic maldevelopment of the brain through environmental influences, by recruiting neurotrophic factors and cytokines, to trigger the changes that lead to impaired neuronal functions. Cytokines being the key regulators of immune/inflammatory reactions are also known to influence the dopaminergic, noradrenergic, and serotonergic neurotransmission. Therefore, functional polymorphisms in cytokine genes may result in imbalances in the pro- and anti-inflammatory cytokine production. METHODS: We screened polymorphisms in pro- and anti-inflammatory cytokine genes using a case-control association study in a South Indian population. The role of allele, genotype, haplotype, and diplotypes of these cytokine genes and their epistatic interactions were assessed in contributing to the risk of developing schizophrenia. Meta-analysis for the reported associations was also monitored for global significance. RESULTS: The pro-inflammatory cytokine gene polymorphisms in IL1Ars1800587, IL6rs1800796, TNFArs361525, and IFNGrs2069718 were associated with schizophrenia. The study also provides significant evidence for strong epistatic interactions among pro-inflammatory cytokine genes IL6 and IFNG in the development of schizophrenia. In silico analysis suggested that associated risk variants were indicative of altered transcriptional activity with higher production of IL1α, IL-6, TNF-α, and IFN-ɤ cytokines. Meta-analysis indicated heterogeneity among study population while IL1Ars1800587 was found to be globally significant. CONCLUSIONS: It is important to identify the nature of inflammatory response that can be amplified by the environment, to influence either Th1 response or Th2 response. The associated functional variants in the study are involved with increased expression resulting in higher production of the pro-inflammatory cytokines IL-1α, IL-6, TNF-α, and IFN-γ. The interaction of immunological stressors with these high producer alleles of pro-inflammatory cytokines may suggest that even a lower threshold may be sufficient to induce a resultant chronic effect on the psycho-social and environmental stressors that may result in the development and pathogenesis of schizophrenia. Understanding environmental factors that influence the expression of these pro-inflammatory cytokine genes or their interaction can possibly help in dissecting the phenotypic variation and therapeutic response to antipsychotics in schizophrenia.
RESUMEN
INTRODUCTION: Mupirocin competitively inhibits bacterial isoleucyl transfer-RNA synthetase and inhibit bacterial protein synthesis. Widespread usage and over the counter availability of the drug has resulted in resistance among Staphylococcus species. OBJECTIVES: This study aimed to determine the overall prevalence of mupirocin resistance among staphylococci. Correlate clinical significance of mupirocin resistance and its relationship to clinical use. METHODS: Consecutive, nonrepetitive, clinical isolates of Staphylococcus aureus (n = 98), and coagulase-negative staphylococci (CoNS) (n = 45) from skin and soft-tissue infections between January 2014 and June 2014 were studied. Antibiotic susceptibility testing was done according to Clinical and Laboratory Standards Institute guidelines. Low- and high-level mupirocin resistance was screened by using 5 µg and 200 µg discs respectively and confirmed by agar dilution. Annual consumption of mupirocin was studied and correlated with resistance. RESULTS: High-level mupirocin resistance was found in 8.2% S. aureus and 15.6% of CoNS, while low-level mupirocin resistance was found in 17% S. aureus and 8.9% CoNS. High-level mupirocin resistance was more common in methicillin-sensitive S. aureus isolates when compared with methicillin-resistant S. aureus isolates (P < 0.05). Mupirocin resistant S. epidermidis were associated with methicillin resistance and constitutive clindamycin resistance. CONCLUSION: High prevalence of mupirocin resistance was found in the present study. Increased prevalence of mupirocin resistance among community-acquired staphylococci demands the judicious use of the drug in the community.
RESUMEN
INTRODUCTION: Non-diphtheritic corynebacteria are normal inhabitants of skin and mucous membrane. When isolated from clinical specimens they are often considered as contaminants. Recent reports suggest their role as emerging nosocomial pathogens. AIM: To speciate non-diphtheritic corynebacteria isolated from wound specimens, to correlate their clinical significance and to determine their invitro antimicrobial susceptibilities to 9 antimicrobial agents. MATERIALS AND METHODS: Twenty five non-diphtheritic corynebacteria from skin and soft tissue infections were selected for study. Isolates were identified by battery of tests and minimum inhibitory concentration (MIC) was detected by Clinical & Laboratory Standards Institute (CLSI) described broth microdilution method. MIC was interpreted according CLSI and British Society for Antimicrobial Chemotherapy (BSAC) guidelines. RESULTS: C. amycolatum was the predominant species (20%) followed by C. striatum (16%). Penicillin was least effective invitro followed by clindamycin and ciprofloxacin. Excellent activities were shown by vancomycin, linezolid and imipenem. Multidrug resistance was found in all the species. CONCLUSION: Non-diphtheritic corynebacteria are potential nosocomial pathogens among acute/chronic complicated skin and soft tissue infection. Vancomycin or linezolid can be used empirically to treat such infections until the invitro susceptibility results are available.
RESUMEN
Homocysteine (Hcy) is known to be a prognostic marker for neurological, cardiovascular and cerebrovascular diseases and several other pathophysiological conditions. A sudden surge in Hcy can increase cardiovascular events. Hemodynamic modulations are known to be associated with individual's chronotype. Therefore, precise monitoring of Hcy is crucial for evaluating its impact on risk. The aim of the present study was to investigate the rhythmicity of Hcy under controlled dietary conditions and whether this rhythmicity is under the genetic control of circadian rhythm. Five subjects were selected from 200 Malayalam speaking healthy ethnic individuals who were screened for functionally critical variants of MTHFR and hCLOCK genes. MTHFR is the rate-limiting enzyme in the methionine cycle and critical for regulating Hcy levels while hCLOCK is a critical gene responsible in regulating the day and night cycles. Rhythmicity in Hcy levels were observed in all the subjects with a consensus on a morning nadir and an evening peak. Gender specific stratification of Hcy levels were observed among similar genotypes of MTHFR and hCLOCK genes. Variations from the conventional rhythmicity of Hcy were observed among similar genotypes of MTHFR and dissimilar hCLOCK genotypes. A reduced plasma Hcy in hCLOCK rs1801260 CC genotype individuals were observed in contrast to CT genotype individuals. The study tends to suggest that Hcy and body time are genetically interdependent and throws light on some of the previously unexplained reasons for variability in Hcy levels. A population specific variation of MTHFR and hCLOCK genes also highlights ethnicity specific risk management.