RESUMEN
Introduction: The worldwide incidence of melanoma has been increasing rapidly in recent decades with Switzerland having one of the highest rates in Europe. Ultraviolet (UV) radiation is one of the main risk factors for skin cancer. Our objective was to investigate UV protective behavior and melanoma awareness in a high-risk cohort for melanoma. Methods: In this prospective monocentric study, we assessed general melanoma awareness and UV protection habits in at-risk patients (≥100 nevi, ≥5 dysplastic nevi, known CDKN2A mutation, and/or positive family history) and melanoma patients using questionnaires. Results: Between 01/2021 and 03/ 2022, a total of 269 patients (53.5% at-risk patients, 46.5% melanoma patients) were included. We observed a significant trend toward using a higher sun protection factor (SPF) in melanoma patients compared with at-risk patients (SPF 50+: 48% [n=60] vs. 26% [n=37]; p=0.0016). Those with a college or university degree used a high SPF significantly more often than patients with lower education levels (p=0.0007). However, higher educational levels correlated with increased annual sun exposure (p=0.041). Neither a positive family history for melanoma, nor gender or Fitzpatrick skin type influenced sun protection behavior. An age of ≥ 50 years presented as a significant risk factor for melanoma development with an odd's ratio of 2.32. Study participation resulted in improved sun protection behavior with 51% reporting more frequent sunscreen use after study inclusion. Discussion: UV protection remains a critical factor in melanoma prevention. We suggest that melanoma awareness should continue to be raised through public skin cancer prevention campaigns with a particular focus on individuals with low levels of education.
RESUMEN
In this work, we investigated the influence of oxygen plasma on the growth of nickel cobaltite (NiCo2O4) thin films compared to growth in a molecular oxygen atmosphere. The films were grown on MgO(001), MgAl2O4(001) and SrTiO3(001) substrates by oxygen plasma (atmosphere of activated oxygen)-assisted and reactive molecular beam epitaxy (molecular oxygen atmosphere). Soft X-ray photoelectron spectroscopy showed that only the use of oxygen plasma led to a spectrum characteristic of (NiCo2O4). Low energy electron diffraction measurements were conducted to obtain information on the structure of the film surfaces. The results proved the formation of a spinel surface structure for films grown with oxygen plasma, while the formation of a rock salt structure was observed for growth with molecular oxygen. To determine the film thickness, X-ray reflectivity measurements were performed. If oxygen plasma were used to grow (NiCo2O4) films, this would result in lower film thicknesses compared to growth using molecular oxygen although the cation flux was kept constant during deposition. Additional X-ray diffraction experiments delivered structural information about the bulk structure of the film. All films had a rock salt bulk structure after exposure to ambient conditions. Angle-resolved hard X-ray photoelectron spectroscopy revealed a homogeneous depth distribution of cations of the grown film, but no typical (NiCo2O4) spectrum anymore. Thus, on the one hand, (NiCo2O4) films with a spinel structure prepared using activated oxygen were not stable under ambient conditions. The structure of these films was transformed into NiCo oxide with a rock salt structure. On the other hand, it was not possible to form (NiCo2O4) films using molecular oxygen. These films had a rock salt structure that was stable under ambient conditions.
RESUMEN
The exponential increase in algorithm-based mobile health (mHealth) applications (apps) for melanoma screening is a reaction to a growing market. However, the performance of available apps remains to be investigated. In this prospective study, we investigated the diagnostic accuracy of a class 1 CE-certified smartphone app in melanoma risk stratification and its patient and dermatologist satisfaction. Pigmented skin lesions ≥ 3 mm and any suspicious smaller lesions were assessed by the smartphone app SkinVision® (SkinVision® B.V., Amsterdam, the Netherlands, App-Version 6.8.1), 2D FotoFinder ATBM® master (FotoFinder ATBM® Systems GmbH, Bad Birnbach, Germany, Version 3.3.1.0), 3D Vectra® WB360 (Canfield Scientific, Parsippany, NJ, USA, Version 4.7.1) total body photography (TBP) devices, and dermatologists. The high-risk score of the smartphone app was compared with the two gold standards: histological diagnosis, or if not available, the combination of dermatologists', 2D and 3D risk assessments. A total of 1204 lesions among 114 patients (mean age 59 years; 51% females (55 patients at high-risk for developing a melanoma, 59 melanoma patients)) were included. The smartphone app's sensitivity, specificity, and area under the receiver operating characteristics (AUROC) varied between 41.3-83.3%, 60.0-82.9%, and 0.62-0.72% according to two study-defined reference standards. Additionally, all patients and dermatologists completed a newly created questionnaire for preference and trust of screening type. The smartphone app was rated as trustworthy by 36% (20/55) of patients at high-risk for melanoma, 49% (29/59) of melanoma patients, and 8.8% (10/114) of dermatologists. Most of the patients rated the 2D TBP imaging (93% (51/55) resp. 88% (52/59)) and the 3D TBP imaging (91% (50/55) resp. 90% (53/59)) as trustworthy. A skin cancer screening by combination of dermatologist and smartphone app was favored by only 1.8% (1/55) resp. 3.4% (2/59) of the patients; no patient preferred an assessment by a smartphone app alone. The diagnostic accuracy in clinical practice was not as reliable as previously advertised and the satisfaction with smartphone apps for melanoma risk stratification was scarce. MHealth apps might be a potential medium to increase awareness for melanoma screening in the lay population, but healthcare professionals and users should be alerted to the potential harm of over-detection and poor performance. In conclusion, we suggest further robust evidence-based evaluation before including market-approved apps in self-examination for public health benefits.
RESUMEN
At the early stages of the COVID-19 outbreak in 2020, Switzerland was among the countries with the highest number of SARS-CoV2-infections per capita in the world. Lockdowns had a remarkable impact on primary care access and resulted in postponed cancer screenings. The aim of this study was to investigate the effects of the COVID-19 lockdown on the diagnosis of melanomas and stage of melanomas at diagnosis. In this retrospective, exploratory cohort study, 1240 patients with a new diagnosis of melanoma were analyzed at five tertiary care hospitals in German-speaking Switzerland over a period of two years and three months. We compared the pre-lockdown (01/FEB/19-15/MAR/20, n = 655) with the lockdown (16/MAR/20-22/JUN/20, n = 148) and post-lockdown period (23/JUN/20-30/APR/21, n = 437) by evaluating patients' demographics and prognostic features using Breslow thickness, ulceration, subtype, and stages. We observed a short-term, two-week rise in melanoma diagnoses after the major lift of social lockdown restrictions. The difference of mean Breslow thicknesses was significantly greater in older females during the lockdown compared to the pre-lockdown (1.9 ± 1.3 mm, p = 0.03) and post-lockdown period (1.9 ± 1.3 mm, p = 0.048). Thickness increase was driven by nodular melanomas (2.9 ± 1.3 mm, p = 0.0021; resp. 2.6 ± 1.3 mm, p = 0.008). A proportional rise of advanced melanomas was observed during lockdown (p = 0.047). The findings provide clinically relevant insights into lockdown-related gender- and age-dependent effects on melanoma diagnosis. Our data highlight a stable course in new melanomas with a lower-than-expected increase in the post-lockdown period. The lockdown period led to a greater thickness in elderly women driven by nodular melanomas and a proportional shift towards stage IV melanoma. We intend to raise awareness for individual cancer care in future pandemic management strategies.
RESUMEN
Here, we present the (element-specific) magnetic properties and cation ordering for ultrathin Co-rich cobalt ferrite films. Two Co-rich CoxFe3-xO4 films with different stoichiometry (x=1.1 and x=1.4) have been formed by reactive solid phase epitaxy due to post-deposition annealing from epitaxial CoO/Fe3O4 bilayers deposited before on Nb-doped SrTiO3(001). The electronic structure, stoichiometry and homogeneity of the cation distribution of the resulting cobalt ferrite films were verified by angle-resolved hard X-ray photoelectron spectroscopy. From X-ray magnetic circular dichroism measurements, the occupancies of the different sublattices were determined using charge-transfer multiplet calculations. For both ferrite films, a partially inverse spinel structure is found with increased amount of Co3+ cations in the low-spin state on octahedral sites for the Co1.4Fe1.6O4 film. These findings concur with the results obtained by superconducting quantum interference device measurements. Further, the latter measurements revealed the presence of an additional soft magnetic phase probably due to cobalt ferrite islands emerging from the surface, as suggested by atomic force microscope measurements.
RESUMEN
Lower body negative pressure (LBNP) application simulates hemorrhage. We investigated how seasons affect coagulation values at rest and during LBNP. Healthy participants were tested in cold (November-April) and warm (May-October) months. Following a 30-min supine period, LBNP was started at -10 mmHg and increased by -10 mmHg every five minutes until a maximum of -40 mmHg. Recovery was for 10 min. Blood was collected at baseline, end of LBNP, and end of recovery. Hemostatic profiling included standard coagulation tests, calibrated automated thrombogram, thrombelastometry, impedance aggregometry, and thrombin formation markers. Seven men (25.0 ± 3.6 years, 79.7 ± 7.8 kg weight, 182.4 ± 3.3 cm height, and 23.8 ± 2.3 kg/m2 BMI) and six women (25.0 ± 2.4 years, 61.0 ± 8.4 kg weight, 167 ± 4.7 cm height, and 21.8 ± 2.4 kg/m2 BMI) participated. Baseline levels of prothrombin (FII), tissue factor (TF) and markers for thrombin generation F1+2 and the thrombin/antithrombin complex (TAT) were higher during summer. Factor VIII, prothrombin fragment 1+2 (F1+2), TAT and the coagulation time showed significant increases during LBNP in both seasons. Some calibrated automated thrombography variables (Calibrated automated thrombography (CAT): lag, time to peak (ttPeak), peak) shifted in a procoagulant direction during LBNP in summer. Red blood cell counts (RBC), hemoglobin and white blood cell counts (WBC) decreased during LBNP. LBNP application reduced prothrombin time in winter and activated partial thromboplastin time in summer. Greater levels of FII, TF, F1+2, and TAT-a more pronounced LBNP-induced procoagulative effect, especially in CAT parameters (lag time (LT), Peak, ttPeak, Velindex)-were seen in summer. These results could have substantial medical implications.
RESUMEN
Adenosine kinase (AdK) is a key player in controlling intra- and extracellular concentrations of the signaling molecule adenosine. Extensive evidence points to an important role of AdK in several diseases, and suggests that AdK inhibition might be a promising therapeutic strategy. The development of a new AdK assay and subsequent screening of part of our focused compound library led to the identification of 12 hit compounds (hit rate of 6%) representing six new classes of non-nucleoside human AdK inhibitors. The most potent inhibitor 1 displayed a Ki value of 184nM. Compound screening with a newly developed assay was useful and efficient for discovering novel AdK inhibitors which may serve as lead structures for developing drugs for adenosine augmentation therapy.
Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-ActividadRESUMEN
OBJECTIVE: Despite the fact that glycerol is well known as a nontoxic substance, intoxication with this tertiary alcohol is possible. We report on a 72-year-old male who was referred to the Department of Neurology with progressive neurological symptoms that had developed 4 h prior to admission. Temporally associated was the so-called glycerol test or Klockhoff test, which was performed for the diagnosis of suspected Menière's disease. The test procedure starts with oral administration of glycerol, the maximal dose should not exceed 1.5 g/kg of body weight. METHODS: Because of an apparently pathologically highly elevated serum concentration of triglycerides (3,465 mg/dL) measured 10 h after glycerol administration, the suspicion of an overdose of glycerol rose. During the following day, the glycerol serum concentration was analyzed at three different times. RESULTS: Based on these measurements, we determined pharmacokinetic parameters and estimated the initially ingested amount of glycerol of about 3.88-3.95 g/kg body weight. CONCLUSION: We conclude that an accidental overdose of glycerol must have occurred during the glycerol test to the patient.