Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Tissue Eng ; 15: 20417314241235527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516227

RESUMEN

In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.

2.
Elife ; 122024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407174

RESUMEN

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Asunto(s)
Cnidarios , Hydra , Animales , Red Nerviosa , Neuronas , Neuritas
3.
Glia ; 72(4): 794-808, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174817

RESUMEN

Axons of globular bushy cells in the cochlear nucleus convey hyper-accurate signals to the superior olivary complex, the initial site of binaural processing via comparably thick axons and the calyx of the Held synapse. Bushy cell fibers involved in hyper-accurate binaural processing of low-frequency sounds are known to have an unusual internode length-to-axon caliber ratio (L/d) correlating with higher conduction velocity and superior temporal precision of action potentials. How the L/d-ratio develops and what determines this unusual myelination pattern is unclear. Here we describe a gradual developmental transition from very simple to complex, mature nodes of Ranvier on globular bushy cell axons during a 2-week period starting at postnatal day P6/7. The molecular composition of nodes matured successively along the axons from somata to synaptic terminals with morphologically and molecularly mature nodes appearing almost exclusively after hearing onset. Internodal distances are initially coherent with the canonical L/d-ratio of ~100. Several days after hearing onset, however, an over-proportional increase in axon caliber occurs in cells signaling low-frequency sounds which alters their L/d ratio to ~60. Hence, oligodendrocytes initially myelinating axons according to their transient axon caliber but a subsequent differential axon thickening after hearing onset results in the unusual myelination pattern.


Asunto(s)
Axones , Neuronas , Potenciales de Acción/fisiología , Axones/fisiología , Terminales Presinápticos , Oligodendroglía , Vaina de Mielina/fisiología
4.
J Trace Elem Med Biol ; 73: 127012, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35679765

RESUMEN

BACKGROUND: Cadmium is a highly toxic heavy metal that is capable of accumulating in the body and causing neurodegeneration. However, the effect of other trace elements on Cd2+ toxicity is currently poorly understood. The aim of this work was to study the effect of Zn2+ and Cu2+ ions on cadmium-induced death of neurons in the cerebral cortex. METHODS: The work was performed on rat cortical primary cultures. The MTT test was used to determine the cytotoxicity effects. Analysis of intracellular Ca2+ concentration was assessed by the Fluo-4 AM calcium indicator that exhibit an increase in fluorescence upon binding Ca2+. MitoSOX Red (mitochondrial superoxide indicator) was used to measuring mitochondrial ROS content in live cells. RESULTS: In this article, we show that the administration of CdCl2 (0.005-0.02 mM) for 48 h induced an increase in dose-dependent death rate of cultured cortical neurons. Mature neurons were more sensitive to the damaging effects of Cd2+ than immature ones. ZnCl2 (0.01-0.03 mM) significantly protected neurons from this toxic effect. In contrast to ZnCl2, CuCl2 (0.01 mM) increased cadmium neurotoxicity. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24 h-exposure to Cd2+ induced intensive increase in Fluo-4 fluorescence in neurons, which was significantly reduced by zinc ions. CuCl2 increased the cadmium-induced Fluo-4 and MitoSOX Red fluorescence in neurons. The chelator of intracellular Ca2+ BAPTA significantly decreased Cd2+-induced intensive increase in Fluo-4 fluorescence in cells. CONCLUSION: The data obtained by us indicate that Zn2+ and Cu2+ can affect the neurotoxicity of cadmium in different directions: Zn2+ weaken the violation of intracellular calcium homeostasis caused by cadmium, preventing cell death, while Cu2+ potentiate the increase in the level of free intracellular calcium induced by cadmium and the development of mitochondrial dysfunction with an increase in the production of free radicals in differentiated cultured neurons of the cerebral cortex, which ultimately stimulates cytotoxicity.


Asunto(s)
Intoxicación por Cadmio , Síndromes de Neurotoxicidad , Animales , Cadmio/metabolismo , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Cobre/metabolismo , Iones/metabolismo , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Ratas , Zinc/metabolismo , Zinc/farmacología
5.
Exp Astron (Dordr) ; 54(2-3): 473-519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36915623

RESUMEN

The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.

6.
Phys Rev E ; 103(6-1): 063202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271660

RESUMEN

We investigate spectral properties of turbulence in the solar wind that is a weakly collisional astrophysical plasma, accessible to in situ observations. Using the Helios search coil magnetometer measurements in the fast solar wind, in the inner heliosphere, we focus on properties of the turbulent magnetic fluctuations at scales smaller than the ion characteristic scales, the so-called kinetic plasma turbulence. At such small scales, we show that magnetic power spectra between 0.3 and 0.9 AU from the Sun have a generic shape ∼f^{-8/3}exp(-f/f_{d}), where the dissipation frequency f_{d} is correlated with the Doppler shifted frequency f_{ρe} of the electron Larmor radius. This behavior is statistically significant: all the observed kinetic spectra are well described by this model, with f_{d}=f_{ρe}/1.8. Our results indicate that the electron gyroradius plays the role of the dissipation scale and marks the end of the electromagnetic cascade in the solar wind.

7.
Antioxidants (Basel) ; 9(5)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370131

RESUMEN

After traumatic brain injury (TBI), an increase in dysfunction of the limbs contralateral to injury focus was observed. Using different behavioral tests, we found that a single intravenous injection of methylene blue (MB, 1 mg/kg) 30 min after the injury reduced the impairment of the motor functions of the limbs from 7 to 120 days after TBI. Administration of methylene blue 30 min after the injury and then monthly (six injections in total) was the most effective both in terms of preservation of limb function and duration of therapeutic action. This therapeutic effect was clearly manifested from the seventh day and continued until the end of the experiment-by the 180th day after TBI. MB is known to possess antioxidant properties; it has a protective effect against TBI by promoting autophagy and minimizing lesion volume in the first two weeks after TBI. Studies of the brains on the 180th day after TBI demonstrated that the monthly treatment of animals with MB statistically significantly prevented an increase in the density of microglial cells in the ipsilateral hemisphere and a decrease in the thickness of the corpus callosum in the contralateral hemisphere in comparison with untreated animals. However, on the 180th day after TBI, the magnetic resonance imaging scan of the animal brains did not show a significant reduction in the volume of the lesion in MB-treated animals. These findings are important for understanding the development of the long-term effects of TBI and expand the required therapeutic window for targeted neuroprotective interventions.

8.
Brain Res ; 1740: 146854, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339501

RESUMEN

The protective effect of methylene blue (MB) was investigated on the model of focal one-sided traumatic brain injury (TBI) of the sensorimotor cortex region from 1 to 7 days after the injury. TBI caused a reliable disruption of the functions of the limbs contralateral to injury focus, an increase in the expression of S100 protein and blood-brain barrier (BBB) permeability in the ipsilateral hemisphere. The single intravenous injection of MB (1 mg/kg body weight) 30 min after TBI significantly reduced the limb function impairment as well as a TBI-induced increase in the expression of inflammatory marker S100 protein, and BBB permeability. When modeling inflammation in vitro, MB was found to protect cultured neurons from the toxic effects of lipopolysaccharide. In conclusion, the preservation of blood-brain barrier and a decrease in the expression of S100 protein may be an important mechanism by means of which MB improves neurological outcome. Our data demonstrate that MB can be a very promising pharmacological compound with neuroprotective properties for TBI treatment.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Azul de Metileno/administración & dosificación , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Proteínas S100/antagonistas & inhibidores , Administración Intravenosa , Animales , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/administración & dosificación , Expresión Génica , Fuerza de la Mano/fisiología , Masculino , Enfermedades del Sistema Nervioso/metabolismo , Ratas , Ratas Wistar , Proteínas S100/biosíntesis , Proteínas S100/genética
9.
J Physiol ; 597(16): 4341-4355, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31270820

RESUMEN

KEY POINTS: Ongoing, moderate noise exposure does not instantly damage the auditory system but may cause lasting deficits, such as elevated thresholds and accelerated ageing of the auditory system. The neuromodulatory peptide urocortin-3 (UCN3) is involved in the body's recovery from a stress response, and is also expressed in the cochlea and the auditory brainstem. Lack of UCN3 facilitates age-induced hearing loss and causes permanently elevated auditory thresholds following a single 2 h noise exposure at moderate intensities. Outer hair cell function in mice lacking UCN3 is unaffected, so that the observed auditory deficits are most likely due to inner hair cell function or central mechanisms. Highly specific, rather than ubiquitous, expression of UCN3 in the brain renders it a promising candidate for designing drugs to ameliorate stress-related auditory deficits, including recovery from acoustic trauma. ABSTRACT: Environmental acoustic noise is omnipresent in our modern society, with sound levels that are considered non-damaging still causing long-lasting or permanent changes in the auditory system. The small neuromodulatory peptide urocortin-3 (UCN3) is the endogenous ligand for corticotropin-releasing factor receptor type 2 and together they are known to play an important role in stress recovery. UCN3 expression has been observed in the auditory brainstem, but its role remains unclear. Here we describe the detailed distribution of UCN3 expression in the murine auditory brainstem and provide evidence that UCN3 is expressed in the synaptic region of inner hair cells in the cochlea. We also show that mice with deficient UCN3 signalling experience premature ageing of the auditory system starting at an age of 4.7 months with significantly elevated thresholds of auditory brainstem responses (ABRs) compared to age-matched wild-type mice. Following a single, 2 h exposure to moderate (84 or 94 dB SPL) noise, UCN3-deficient mice exhibited significantly larger shifts in ABR thresholds combined with maladaptive recovery. In wild-type mice, the same noise exposure did not cause lasting changes to auditory thresholds. The presence of UCN3-expressing neurons throughout the auditory brainstem and the predisposition to hearing loss caused by preventing its normal expression suggests UCN3 as an important neuromodulatory peptide in the auditory system's response to loud sounds.


Asunto(s)
Umbral Auditivo/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ruido/efectos adversos , Transducción de Señal/fisiología , Urocortinas/metabolismo , Envejecimiento , Animales , Femenino , Células Ciliadas Auditivas Externas , Pérdida Auditiva Provocada por Ruido/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Urocortinas/genética
10.
Phys Rev E ; 99(5-1): 053202, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31212494

RESUMEN

We present a local approach to the study of scale-to-scale energy transfers in magnetohydrodynamic (MHD) turbulence. This approach is based on performing local averages of the physical fields, which amounts to filtering scales smaller than some parameter ℓ. A key step in this work is the derivation of a local Kármán-Howarth-Monin relation which provides a local form of Politano and Pouquet's 4/3 law, without any assumption of homogeneity or isotropy. Our approach is exact and nonrandom, and we show its connection to the usual statistical results of turbulence. Its implementation on data obtained via a three-dimensional direct numerical simulation of the forced incompressible MHD equations from the John Hopkins turbulence database constitutes the main part of our study. First, we show that the local Kármán-Howarth-Monin relation holds well. The space statistics of local cross-scale transfers are studied next, their means and standard deviations being maximum at inertial scales and their probability density functions (PDFs) displaying very wide tails. Events constituting the tails of the PDFs are shown to form structures of strong transfers, either positive or negative, which can be observed over the whole available range of scales. As ℓ is decreased, these structures become more and more localized in space while contributing to an increasing fraction of the mean energy cascade rate. Finally, we highlight their quasi-one-dimensional (filamentlike) or quasi-two-dimensional (sheetlike or ribbonlike) nature and show that they appear in areas of strong vorticity or electric current density.

11.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152098

RESUMEN

In neural circuits, action potentials (spikes) are conventionally caused by excitatory inputs whereas inhibitory inputs reduce or modulate neuronal excitability. We previously showed that neurons in the superior paraolivary nucleus (SPN) require solely synaptic inhibition to generate their hallmark offset response, a burst of spikes at the end of a sound stimulus, via a post-inhibitory rebound mechanism. In addition SPN neurons receive excitatory inputs, but their functional significance is not yet known. Here we used mice of both sexes to demonstrate that in SPN neurons, the classical roles for excitation and inhibition are switched, with inhibitory inputs driving spike firing and excitatory inputs modulating this response. Hodgkin-Huxley modeling suggests that a slow, NMDA receptor (NMDAR)-mediated excitation would accelerate the offset response. We find corroborating evidence from in vitro and in vivo recordings that lack of excitation prolonged offset-response latencies and rendered them more variable to changing sound intensity levels. Our results reveal an unsuspected function for slow excitation in improving the timing of post-inhibitory rebound firing even when the firing itself does not depend on excitation. This shows the auditory system employs highly specialized mechanisms to encode timing-sensitive features of sound offsets which are crucial for sound-duration encoding and have profound biological importance for encoding the temporal structure of speech.


Asunto(s)
Potenciales de Acción/fisiología , Percepción Auditiva/fisiología , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Complejo Olivar Superior/fisiología , Estimulación Acústica , Animales , Femenino , Masculino , Ratones Endogámicos C57BL
12.
Brain Res Bull ; 148: 100-108, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30935979

RESUMEN

The protective effect of SkQR1, a mitochondria-targeted antioxidant, was investigated on the model of focal one-sided traumatic brain injury (TBI) of the sensorimotor cortex region from 1 to 7 days after the injury. TBI caused a reliable disruption of the functions of the limbs contralateral to injury focus. The intravenous single injection of SkQR1 (250 nmol/kg) but not C12R1 (a SkQR1 homologue devoid of the antioxidant group) 30 min after TBI reduced the impairment of the motor functions of the limbs. A statistically significant improvement in limb function in animals was shown using 3 different tests: limb-placing test, beam-walking test and grip strength test. A pronounced therapeutic effect appeared on the 1th day and lasted until the end of the experiment - the 7th day after TBI. Histopathological examination showed that in the group of animals that did not receive SkQR1 in the marginal layer of the lesion there was a marked increase in astroglial expression, infiltration with segmented neutrophils, and poor survivability of neurons compared with animals treated with SkQR1. The obtained results demonstrate that the single use of plastoquinone-containing mitochondria-targeted antioxidant SkQR1 at the early stages of development of traumatic brain damage can reduce TBI-related disruptions of limb functions, and that mechanisms of the brain damage after trauma are dependent on the production of mitochondrial reactive oxygen species.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Plastoquinona/análogos & derivados , Rodaminas/farmacología , Administración Intravenosa , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Masculino , Mitocondrias/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Plastoquinona/metabolismo , Plastoquinona/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Rodaminas/metabolismo
13.
Toxicology ; 393: 1-8, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100878

RESUMEN

Cadmium is a highly toxic heavy metal that is capable of accumulating in the body via direct exposure or through the alimentary and respiratory tract, leading to neurodegeneration. In this article, we show that the application of CdCl2 (0.001-0.005mM) for 48h induced high dose-dependent death rate of cultured cerebellar granule neurons (CGNs). Unlike Trolox or vitamin E, antioxidant N-acetyl-l-cysteine (NAC, 1mM) and Mn2+ (0.0025-0.005mM) significantly protected CGNs from this toxic effect. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24h-exposure to Cd2+ induced intensive increase of Fluo-4 fluorescence in neurons accompanied by mitochondria swelling. These data imply that the cadmium-induced Ca2+ increase is an important element in the death of neurons due to toxic effect of cadmium and the mechanism of protective action of manganese and NAC is mediated by the prevention of increase in calcium levels.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Cloruro de Cadmio/toxicidad , Manganeso/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Homeostasis/efectos de los fármacos , Microscopía Electrónica de Transmisión , Mitocondrias/patología , Mitocondrias/ultraestructura , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Ratas Wistar
14.
J Neurosci ; 37(34): 8239-8255, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28760859

RESUMEN

Plasticity of myelination represents a mechanism to tune the flow of information by balancing functional requirements with metabolic and spatial constraints. The auditory system is heavily myelinated and operates at the upper limits of action potential generation frequency and speed observed in the mammalian CNS. This study aimed to characterize the development of myelin within the trapezoid body, a central auditory fiber tract, and determine the influence sensory experience has on this process in mice of both sexes. We find that in vitro conduction speed doubles following hearing onset and the ability to support high-frequency firing increases concurrently. Also in this time, the diameter of trapezoid body axons and the thickness of myelin double, reaching mature-like thickness between 25 and 35 d of age. Earplugs were used to induce ∼50 dB elevation in auditory thresholds. If introduced at hearing onset, trapezoid body fibers developed thinner axons and myelin than age-matched controls. If plugged during adulthood, the thickest trapezoid body fibers also showed a decrease in myelin. These data demonstrate the need for sensory activity in both development and maintenance of myelin and have important implications in the study of myelin plasticity and how this could relate to sensorineural hearing loss following peripheral impairment.SIGNIFICANCE STATEMENT The auditory system has many mechanisms to maximize the dynamic range of its afferent fibers, which operate at the physiological limit of action potential generation, precision, and speed. In this study we demonstrate for the first time that changes in peripheral activity modifies the thickness of myelin in sensory neurons, not only in development but also in mature animals. The current study suggests that changes in CNS myelination occur as a downstream mechanism following peripheral deficit. Given the required submillisecond temporal precision for binaural auditory processing, reduced myelination might augment sensorineural hearing impairment.


Asunto(s)
Estimulación Acústica/métodos , Vías Auditivas/fisiología , Axones/fisiología , Potenciales Evocados Auditivos/fisiología , Fibras Nerviosas Mielínicas/fisiología , Cuerpo Trapezoide/fisiología , Potenciales de Acción/fisiología , Animales , Vías Auditivas/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos CBA , Técnicas de Cultivo de Órganos , Sonido , Cuerpo Trapezoide/citología
15.
Proc Natl Acad Sci U S A ; 114(24): E4851-E4858, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559325

RESUMEN

Precise timing of synaptic inputs is a fundamental principle of neural circuit processing. The temporal precision of postsynaptic input integration is known to vary with the computational requirements of a circuit, yet how the timing of action potentials is tuned presynaptically to match these processing demands is not well understood. In particular, action potential timing is shaped by the axonal conduction velocity and the duration of synaptic transmission delays within a pathway. However, it is not known to what extent these factors are adapted to the functional constraints of the respective circuit. Here, we report the finding of activity-invariant synaptic transmission delays as a functional adaptation for input timing adjustment in a brainstem sound localization circuit. We compared axonal and synaptic properties of the same pathway between two species with dissimilar timing requirements (gerbil and mouse): In gerbils (like humans), neuronal processing of sound source location requires exceptionally high input precision in the range of microseconds, but not in mice. Activity-invariant synaptic transmission and conduction delays were present exclusively in fast conducting axons of gerbils that also exhibited unusual structural adaptations in axon myelination for increased conduction velocity. In contrast, synaptic transmission delays in mice varied depending on activity levels, and axonal myelination and conduction velocity exhibited no adaptations. Thus, the specializations in gerbils and their absence in mice suggest an optimization of axonal and synaptic properties to the specific demands of sound localization. These findings significantly advance our understanding of structural and functional adaptations for circuit processing.


Asunto(s)
Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Procesamiento Espacial/fisiología , Animales , Núcleo Coclear/fisiología , Femenino , Gerbillinae , Humanos , Masculino , Ratones , Ratones Endogámicos CBA , Vaina de Mielina/fisiología , Conducción Nerviosa/fisiología , Localización de Sonidos/fisiología , Transmisión Sináptica/fisiología , Factores de Tiempo , Cuerpo Trapezoide/fisiología
16.
J Neurophysiol ; 116(6): 2676-2688, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27655966

RESUMEN

In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Complejo Olivar Superior/citología , Complejo Olivar Superior/metabolismo , Estimulación Acústica , Animales , Animales Recién Nacidos , Vías Auditivas/fisiología , Colina O-Acetiltransferasa/metabolismo , Estimulación Eléctrica , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Neurológicos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fosfopiruvato Hidratasa/metabolismo , Psicoacústica , Estilbamidinas/farmacocinética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
17.
Nat Commun ; 6: 8073, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26305015

RESUMEN

Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Núcleo Coclear/fisiología , Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Nódulos de Ranvier/fisiología , Localización de Sonidos/fisiología , Animales , Tronco Encefálico/fisiología , Simulación por Computador , Gerbillinae , Inmunohistoquímica , Técnicas In Vitro , Microscopía Confocal , Microscopía Electrónica , Modelos Neurológicos , Vaina de Mielina/fisiología , Terminales Presinápticos/fisiología
18.
J Neurosci ; 34(15): 5370-84, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719114

RESUMEN

Neurons in the medial superior olive (MSO) encode interaural time differences (ITDs) with sustained firing rates of >100 Hz. They are able to generate such high firing rates for several hundred milliseconds despite their extremely low-input resistances of only few megaohms and high synaptic conductances in vivo. The biophysical mechanisms by which these leaky neurons maintain their excitability are not understood. Since action potentials (APs) are usually assumed to be generated in the axon initial segment (AIS), we analyzed anatomical data of proximal MSO axons in Mongolian gerbils and found that the axon diameter is <1 µm and the internode length is ∼100 µm. Using a morphologically constrained computational model of the MSO axon, we show that these thin axons facilitate the excitability of the AIS. However, for ongoing high rates of synaptic inputs the model generates a substantial fraction of APs in its nodes of Ranvier. These distally initiated APs are mediated by a spatial gradient of sodium channel inactivation and a strong somatic current sink. The model also predicts that distal AP initiation increases the dynamic range of the rate code for ITDs.


Asunto(s)
Potenciales de Acción , Axones/fisiología , Modelos Neurológicos , Animales , Axones/metabolismo , Axones/ultraestructura , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Gerbillinae , Nódulos de Ranvier/fisiología , Canales de Sodio/metabolismo , Sinapsis/fisiología
19.
Nat Neurosci ; 16(12): 1840-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24141311

RESUMEN

Across all sensory modalities, the effect of context-dependent neural adaptation can be observed at every level, from receptors to perception. Nonetheless, it has long been assumed that the processing of interaural time differences, which is the primary cue for sound localization, is nonadaptive, as its outputs are mapped directly onto a hard-wired representation of space. Here we present evidence derived from in vitro and in vivo experiments in gerbils indicating that the coincidence-detector neurons in the medial superior olive modulate their sensitivity to interaural time differences through a rapid, GABA(B) receptor-mediated feedback mechanism. We show that this mechanism provides a gain control in the form of output normalization, which influences the neuronal population code of auditory space. Furthermore, psychophysical tests showed that the paradigm used to evoke neuronal GABA(B) receptor-mediated adaptation causes the perceptual shift in sound localization in humans that was expected on the basis of our physiological results in gerbils.


Asunto(s)
Adaptación Fisiológica/fisiología , Núcleo Olivar/citología , Receptores de GABA-B/metabolismo , Localización de Sonidos/fisiología , Sinapsis/fisiología , Estimulación Acústica , Adaptación Fisiológica/efectos de los fármacos , Adulto , Animales , Animales Recién Nacidos , Femenino , GABAérgicos/farmacología , Gerbillinae , Glutamato Descarboxilasa/metabolismo , Humanos , Técnicas In Vitro , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Localización de Sonidos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico/farmacología
20.
J Comp Neurol ; 519(14): 2758-78, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21491428

RESUMEN

The mammalian cochlea is under direct control of two groups of cholinergic auditory brainstem neurons, the medial and the lateral olivocochlear neurons. The former modulate the electromechanical amplification in outer hair cells and the latter the transduction of inner hair cells to auditory nerve fibers. The lateral olivocochlear neurons express not only acetylcholine but a variety of co-transmitters including urocortin, which is known to regulate homeostatic responses related to stress; it may also be related to the ontogeny of hearing as well as the generation of hearing disorders. In the present study, we investigated the distribution of urocortin-expressing lateral olivocochlear neurons and their connectivity and distribution of synaptic terminals in the cochlea of juvenile and adult gerbils. In contrast to most other rodents, the gerbil's audiogram covers low frequencies similar to humans, although their communication calls are exclusively in the high-frequency domain. We confirm that in the auditory brainstem urocortin is expressed exclusively in neurons within the lateral superior olive and their synaptic terminals in the cochlea. Moreover, we show that in adult gerbils urocortin expression is restricted to the medial, high-frequency processing, limb of the lateral superior olive and to the mid and basal parts of the cochlea. The same pattern is present in juvenile gerbils shortly before hearing onset (P 9) but transiently disappears after hearing onset, when urocortin is also expressed in low-frequency processing regions. These results suggest a possible role of urocortin in late cochlear development and in the processing of social calls in adult animals.


Asunto(s)
Tronco Encefálico/fisiología , Cóclea/citología , Cóclea/inervación , Neuronas/fisiología , Núcleo Olivar/citología , Urocortinas/metabolismo , Acetilcolina/metabolismo , Animales , Tronco Encefálico/anatomía & histología , Femenino , Gerbillinae , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/fisiología , Humanos , Inmunohistoquímica , Masculino , Neuronas/citología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...