Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 20(205): 20230174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528680

RESUMEN

Feedback control theory facilitates the development of self-regulating systems with desired performance which are predictable and insensitive to disturbances. Feedback regulatory topologies are found in many natural systems and have been of key importance in the design of reliable synthetic bio-devices operating in complex biological environments. Here, we study control schemes for biomolecular processes with two outputs of interest, expanding previously described concepts based on single-output systems. Regulation of such processes may unlock new design possibilities but can be challenging due to coupling interactions; also potential disturbances applied on one of the outputs may affect both. We therefore propose architectures for robustly manipulating the ratio/product and linear combinations of the outputs as well as each of the outputs independently. To demonstrate their characteristics, we apply these architectures to a simple process of two mutually activated biomolecular species. We also highlight the potential for experimental implementation by exploring synthetic realizations both in vivo and in vitro. This work presents an important step forward in building bio-devices capable of sophisticated functions.

2.
J R Soc Interface ; 19(189): 20210737, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35440202

RESUMEN

We introduce a new design framework for implementing negative feedback regulation in synthetic biology, which we term 'dichotomous feedback'. Our approach is different from current methods, in that it sequesters existing fluxes in the process to be controlled, and in this way takes advantage of the process's architecture to design the control law. This signal sequestration mechanism appears in many natural biological systems and can potentially be easier to realize than 'molecular sequestration' and other comparison motifs that are nowadays common in biomolecular feedback control design. The loop is closed by linking the strength of signal sequestration to the process output. Our feedback regulation mechanism is motivated by two-component signalling systems, where a second response regulator could be competing with the natural response regulator thus sequestering kinase activity. Here, dichotomous feedback is established by increasing the concentration of the second response regulator as the level of the output of the natural process increases. Extensive analysis demonstrates how this type of feedback shapes the signal response, attenuates intrinsic noise while increasing robustness and reducing crosstalk.


Asunto(s)
Retroalimentación Fisiológica , Biología Sintética , Retroalimentación , Retroalimentación Fisiológica/fisiología , Fosforilación , Transducción de Señal/fisiología , Biología Sintética/métodos
3.
iScience ; 24(12): 103462, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34927021

RESUMEN

Cells can sense temporal changes of molecular signals, allowing them to predict environmental variations and modulate their behavior. This paper elucidates biomolecular mechanisms of time derivative computation, facilitating the design of reliable synthetic differentiator devices for a variety of applications, ultimately expanding our understanding of cell behavior. In particular, we describe and analyze three alternative biomolecular topologies that are able to work as signal differentiators to input signals around their nominal operation. We propose strategies to preserve their performance even in the presence of high-frequency input signal components which are detrimental to the performance of most differentiators. We find that the core of the proposed topologies appears in natural regulatory networks and we further discuss their biological relevance. The simple structure of our designs makes them promising tools for realizing derivative control action in synthetic biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...