Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 190: 55-61, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948259

RESUMEN

Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.


Asunto(s)
Selenio , Animales , Glutatión Peroxidasa , Neuronas , Selenio/fisiología , Selenoproteína P , Selenoproteínas/genética
2.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34639053

RESUMEN

Selenium (Se) is an essential trace element that is necessary for various metabolic processes, including protection against oxidative stress, and proper cardiovascular function. The role of Se in cardiovascular health is generally agreed upon to be essential yet not much has been defined in terms of specific functions. Se deficiency was first associated with Keshan's Disease, an endemic disease characterized by cardiomyopathy and heart failure. Since then, Se deficiency has been associated with multiple cardiovascular diseases, including myocardial infarction, heart failure, coronary heart disease, and atherosclerosis. Se, through its incorporation into selenoproteins, is vital to maintain optimal cardiovascular health, as selenoproteins are involved in numerous crucial processes, including oxidative stress, redox regulation, thyroid hormone metabolism, and calcium flux, and inadequate Se may disrupt these processes. The present review aims to highlight the importance of Se in cardiovascular health, provide updated information on specific selenoproteins that are prominent for proper cardiovascular function, including how these proteins interact with microRNAs, and discuss the possibility of Se as a potential complemental therapy for prevention or treatment of cardiovascular disease.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/metabolismo , Selenio/deficiencia , Animales , Biomarcadores , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/fisiopatología , Suplementos Dietéticos , Susceptibilidad a Enfermedades , Humanos , Redes y Vías Metabólicas , Miocardio/metabolismo , Selenio/metabolismo , Selenoproteínas/metabolismo
3.
Front Neurosci ; 15: 666601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935643

RESUMEN

The stress response is an important tool in an organism's ability to properly respond to adverse environmental conditions in order to survive. Intense acute or chronic elevation of glucocorticoids, a class of stress hormone, can have deleterious neurological effects, however, including memory impairments and emotional disturbances. In recent years, the protective role of the antioxidant micronutrient selenium against the negative impact of externally applied stress has begun to come to light. In this review, we will discuss the effects of stress on the brain, with a focus on glucocorticoid action in the hippocampus and cerebral cortex, and emerging evidence of an ability of selenium to normalize neurological function in the context of various stress and glucocorticoid exposure paradigms in rodent models.

4.
Mol Cell Endocrinol ; 533: 111335, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052303

RESUMEN

People with obesity are often dyslipidemic and prescribed statins to prevent cardiovascular events. A common side effect of statin use is myopathy. This could potentially be caused by the reduction of selenoproteins that curb oxidative stress, in turn, affecting creatine metabolism. We determined if statins regulate hepatic and muscular selenoprotein expression, oxidative stress and creatine metabolism. Mice lacking selenocysteine lyase (Scly KO), a selenium-provider enzyme for selenoprotein synthesis, were fed a high-fat, Se-supplemented diet and treated with simvastatin. Statin improved creatine metabolism in females and oxidative responses in both sexes. Male Scly KO mice were heavier than females after statin treatment. Hepatic selenoproteins were unaffected by statin and genotype in females. Statin upregulated muscular Gpx1 in females but not males, while Scly loss downregulated muscular Gpx1 in males and Selenon in females. Osgin1 was reduced in statin-treated Scly KO males after AmpliSeq analysis. These results refine our understanding of the sex-dependent role of selenium in statin responses.


Asunto(s)
Hígado/metabolismo , Liasas/genética , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Selenoproteínas/metabolismo , Simvastatina/administración & dosificación , Animales , Creatinina/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Músculo Esquelético/efectos de los fármacos , Obesidad/inducido químicamente , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Selenio , Caracteres Sexuales , Simvastatina/farmacología , Glutatión Peroxidasa GPX1
6.
Biol Trace Elem Res ; 192(1): 26-37, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31222623

RESUMEN

Selenium is an essential dietary micronutrient. Ingested selenium is absorbed by the intestines and transported to the liver where it is mostly metabolized to selenocysteine (Sec). Sec is then incorporated into selenoproteins, including selenoprotein P (SELENOP), which is secreted into plasma and serves as a source of selenium to other tissues of the body. Herein, we provide an overview of the biology of selenium from its absorption and distribution to selenoprotein uptake and degradation, with a particular focus on the latter. Molecular mechanisms of selenoprotein degradation include the lysosome-mediated pathway for SELENOP and endoplasmic reticulum-mediated degradation of selenoproteins via ubiquitin-activated proteasomal pathways. Ubiquitin-activated pathways targeting full-length selenoproteins include the peroxisome proliferator-activated receptor gamma-dependent pathway and substrate-dependent ubiquitination. An alternate mechanism is utilized for truncated selenoproteins, in which cullin-RING E3 ubiquitin ligase 2 targets the defective proteins for ubiquitin-proteasomal degradation. Selenoproteins, particularly SELENOP, may have their Sec residues reutilized for new selenoprotein synthesis via Sec decomposition. This review will explore these aspects in selenium biology, providing insights to knowledge gaps that remain to be uncovered.


Asunto(s)
Proteolisis , Selenio/metabolismo , Selenoproteína P/metabolismo , Animales , Humanos , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
7.
Channels (Austin) ; 13(1): 1-16, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30424709

RESUMEN

Activation of the atrial natriuretic signaling pathway is intrinsic to the pathological responses associated with a range of cardiovascular diseases that stress the heart, especially those involved in sustained cardiac pressure overload which induces hypertrophy and the pathological remodeling that frequently leads to heart failure. We identify transient receptor potential cation channel, subfamily V, member 1, as a regulated molecular component, and therapeutic target of this signaling system. Data show that TRPV1 is a physical component of the natriuretic peptide A, cGMP, PKG signaling complex, interacting with the Natriuretic Peptide Receptor 1 (NPR1), and upon binding its ligand, Natriuretic Peptide A (NPPA, ANP) TRPV1 activation is subsequently suppressed through production of cGMP and PKG mediated phosphorylation of the TRPV1 channel. Further, inhibition of TRPV1, with orally delivered drugs, suppresses chamber and myocyte hypertrophy, and can longitudinally improve in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction, reversing pre-established hypertrophy induced by pressure load while restoring chamber function. TRPV1 is a physical and regulated component of the natriuretic peptide signaling system, and TRPV1 inhibition may provide a new treatment strategy for treating, and reversing the loss of function associated with cardiac hypertrophy and heart failure.


Asunto(s)
Acrilamidas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cardiomegalia/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Citrato de Sildenafil/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Acrilamidas/administración & dosificación , Administración Oral , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células HEK293 , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Citrato de Sildenafil/administración & dosificación , Canales Catiónicos TRPV/metabolismo
9.
J Neurosci ; 38(15): 3708-3728, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29540552

RESUMEN

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Plasticidad Neuronal , Memoria Espacial , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Condicionamiento Clásico , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Mutación Puntual , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
10.
J Neurochem ; 144(2): 201-217, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29164616

RESUMEN

High levels (µM) of beta amyloid (Aß) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aß, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aß at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aß. An N-terminal Aß fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aß-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aß fragment and a shorter hexapeptide core sequence in the Aß fragment (Aßcore: 10-15) to protect or reverse Aß-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aß fragment and Aßcore on Aß-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aß fragment and Aßcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aßcore were also shown to be fully protective against Aß-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aß fragment, while active stabilized N-terminal Aßcore derivatives offer the potential for therapeutic application.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Péptidos beta-Amiloides/química , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Condicionamiento Operante/efectos de los fármacos , Miedo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/química , Especies Reactivas de Oxígeno/metabolismo
11.
J Neurosci ; 34(43): 14210-8, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25339735

RESUMEN

Soluble ß-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar ß-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within ß-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and ß-secretases, and resident carboxypeptidase. The N-terminal ß-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length ß-amyloid, the N-terminal ß-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal ß-amyloid fragment proved to be highly potent and more effective than full-length ß-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal ß-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length ß-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal ß-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal ß-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal ß-amyloid fragment may serve as a potent and effective endogenous neuromodulator.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Calcio/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Secuencia de Aminoácidos , Péptidos beta-Amiloides/fisiología , Animales , Línea Celular Tumoral , Condicionamiento Psicológico/efectos de los fármacos , Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos
12.
J Biol Chem ; 288(16): 11175-90, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23479730

RESUMEN

Although the interaction between ß-amyloid (Aß) and nicotinic acetylcholine receptors has been widely studied, the impact of prolonged exposure to Aß on nAChR expression and signaling is not known. In this study, we employed a neuronal culture model to better understand the impact of sustained exposure of Aß on the regulation of cellular and synaptic function. The differentiated rodent neuroblastoma cell line NG108-15 expressing exogenous high-affinity α4ß2 nAChRs was exposed to soluble oligomeric Aß for several days. Ca(2+) responses, expression levels of α4ß2 nAChRs, rate of mitochondrial movement, mitochondrial fission, levels of reactive oxygen species, and nuclear integrity were compared between Aß-treated and untreated cells, transfected or not (mock-transfected) with α4ß2 nAChRs. Sustained exposure of Aß(1-42) to α4ß2 nAChR-transfected cells for several days led to increased Ca(2+) responses on subsequent acute stimulation with Aß(1-42) or nicotine, paralleled by increased expression levels of α4ß2 nAChRs, likely the result of enhanced receptor recycling. The rate of mitochondrial movement was sharply reduced, whereas the mitochondrial fission protein pDrp-1 was increased in α4ß2 nAChR-transfected cells treated with Aß(1-42). In addition, the presence of α4ß2 nAChRs dramatically enhanced Aß(1-42)-mediated increases in reactive oxygen species and nuclear fragmentation, eventually leading to apoptosis. Our data thus show disturbed calcium homeostasis coupled with mitochondrial dysfunction and loss of neuronal integrity on prolonged exposure of Aß in cells transfected with α4ß2 nAChRs. Together, the results suggest that the presence of nAChRs sensitizes neurons to the toxic actions of soluble oligomeric Aß, perhaps contributing to the cholinergic deficit in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Homeostasis , Modelos Biológicos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores Nicotínicos/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Neuronas/patología , Fragmentos de Péptidos/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores Nicotínicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA