Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Physiol ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702572

RESUMEN

Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.

3.
Neurochem Res ; 47(12): 3682-3696, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35951202

RESUMEN

Ischemic stroke remains a devastating cerebrovascular disease that accounts for a high proportion of mortality and disability worldwide. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are responsible for regulation of post-transcriptional gene expression, and growing evidence supports a role for miRNAs in stroke injury and recovery. The current study examined the role of miR-182 in experimental stroke using both in vitro and in vivo models of ischemic injury. Brain levels of miR-182 significantly increased after transient middle cerebral artery occlusion (MCAO) in mice and in primary astrocyte cultures subjected to combined oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo, stroke volume and neurological score were significantly improved by pre-treatment with miR-182 antagomir. Astrocyte cultures stressed with OGD/R resulted in mitochondrial fragmentation and downregulation of cortactin, an actin-binding protein. Inhibition of miR-182 significantly preserved cortactin expression, reduced mitochondrial fragmentation and improved astrocyte survival after OGD/R. In parallel, lipopolysaccharide (LPS)-induced nitric-oxide release in astrocyte cultures was significantly reduced by miR-182 inhibition, translating to reduced injury in primary neuronal cultures subjected to conditioned medium from LPS-treated astrocytes. These findings identify miR-182 and/or cortactin as potential clinical targets to preserve mitochondrial structure and mitigate neuroinflammation and cell death after ischemic stroke.


Asunto(s)
Isquemia Encefálica , MicroARNs , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Ratones , Apoptosis/genética , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Cortactina/metabolismo , Glucosa , Inflamación/prevención & control , Inflamación/genética , Accidente Cerebrovascular Isquémico , Lipopolisacáridos , MicroARNs/metabolismo , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/genética
4.
Nutr Cancer ; 68(6): 879-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366999

RESUMEN

Resistance to chemotherapy remains a major impediment to the management of most types of cancer. Both intrinsic and acquired drug resistance are mediated by several cellular and molecular mechanisms, including alternative growth-signaling pathways unaffected by specific therapies, alterations in the tumor microenvironment (e.g., hypoxia and angiogenesis), and active transport of drugs out of the cell. Epidemiological studies have validated an inverse correlation between the consumption of dietary polyphenols and the risk of cancer, which has been attributed to polyphenol antioxidant capacity and their potential to inhibit activation of procarcinogens, cancer cell proliferation, metastasis, and angiogenesis, and inhibition or downregulation of active drug efflux transporters. Moreover, polyphenols can induce apoptosis in cancer cells and modulate immune responses and inflammatory cascades. Augmentation of the efficacy of chemotherapy and prevention of multidrug resistance are other important effects of dietary polyphenols that deserve further research, especially after the discovery of tight "crosstalk" between aberrant growth signaling and metabolic dysfunction in cancer cells. In this review, we cover what is currently known about the role of natural polyphenolic compounds in overcoming cancer drug resistance mediated by diverse primary and secondary resistance mechanisms.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Resistencia a Antineoplásicos , Flavonoides/uso terapéutico , Modelos Biológicos , Neoplasias/dietoterapia , Neoplasias/tratamiento farmacológico , Polifenoles/uso terapéutico , Animales , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Derivados del Benceno/uso terapéutico , Transporte Biológico , Terapia Combinada , Suplementos Dietéticos , Resistencia a Múltiples Medicamentos , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...