Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38926309

RESUMEN

The present work was designed to synthesize Ag2O-supported MgO/rGO nanocomposites (NCs) via green method using Phoenix leaf extract for improved photocatalytic and anticancer activity. Green synthesized Ag2O-supported MgO/rGO NCs were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy, and gas chromatography-mass spectroscopy (GC-MS) was applied to examine the chemical components of the Phoenix leaf extract. Characterization data confirmed the preparation of MgO NPs, Ag2O-MgO NCs, and Ag2O-MgO/rGO NC with particle size of 26-28 nm. UV-vis study exhibited that the band gap energy of MgO NPs, Ag2O-MgO NCs, and Ag2O-MgO/rGO NC were in the range of 3.53-3.43 eV. The photocatalytic results showed that the photodegradation of Rh B dye of Ag2O-supported MgO/rGO NCs (82.81%) was significantly higher than pure MgO NPs. Additionally, the biological response demonstrates that the Ag2O-supported MgO/rGO NCs induced high cytotoxicity against MCF-7 cancer cells for 24 h and 48 h compared with both pure MgO NPs and Ag2O-MgO NCs. This study suggests that the adding of Ag2O and rGO sheets played significant role in the enhanced photocatalytic and anticancer performance of MgO NPs.

2.
RSC Adv ; 14(24): 16685-16695, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784428

RESUMEN

The purpose of the present study is to enhance the anticancer and biocompatibility performance of TiO2 NPs, ZnO NPs, ZnO-TiO2 (NCs), and ZnO-TiO2/reduced graphene oxide (RGO) NCs against two types of human cancer (HCT116) and normal (HUVCE) cells. A novel procedure for synthesizing ZnO-TiO2/RGO NCs has been developed using Senna surattensis extract. The improved physicochemical properties of the obtained samples were investigated using different techniques such as XRD, TEM, SEM, XPS, FTIR, DLS and UV-visible spectroscopy. XRD results showed that the addition of ZnO and RGO sheets affects the crystal structure and phase of TiO2 NPs. SEM and TEM images displayed that the TiO2 NPs and ZnO NPs were small with uniform spherical morphology in the prepared ZnO-TiO2/RGO NCs. Besides, it is shown that ZnO-TiO2 NCs anchored onto the surface of RGO sheets with a particle size of 14.80 ± 0.5 nm. XPS data confirmed the surface chemical composition and oxidation states of ZnO-TiO2/RGO NCs. Functional groups of prepared NPs and NCs were determined using FTIR spectroscopy. DLS data confirmed that the addition of ZnO and RGO sheets improves the negative surface charge of the prepared pure TiO2 NPs (-22.51 mV), ZnO NPs (-18.27 mV), ZnO-TiO2 NCs (-30.20 mV), and ZnO-TiO2/RGO NCs (-33.77 mV). Optical analysis exhibited that the bandgap energies of TiO2 NPs (3.30 eV), ZnO NPs (3.33 eV), ZnO-TiO2 NCs (3.03 eV), and ZnO-TiO2/RGO NCs (2.78 eV) were further enhanced by adding ZnO NPs and RGO sheets. This indicates that the synthesized samples can be applied to cancer therapy and environmental remediation. The biological data demonstrated that the produced ZnO-TiO2/RGO NCs show a more cytotoxic effect on HCT116 cells compared to pure TiO2 NPs and ZnO-TiO2 NCs. On the other hand, these NCs displayed the lowest level of toxicity towards normal HUVCE cells. These results indicate that the ZnO-TiO2/RGO NCs have strong toxicity against HCT116 cells and are compatible with normal cells. Our results show that the plant extract enhanced the physicochemical properties of NPs and NCs compared with the traditional chemical methods for synthesis. This study could open new avenues for developing more effective and targeted cancer treatments.

3.
Saudi Pharm J ; 31(9): 101735, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37638224

RESUMEN

Zinc ferrite nanoparticles (ZnFe2O4 NPs) have attracted extensive attention for their diverse applications including sensing, waste-water treatment, and biomedicine. The novelty of the present work is the fabrication of ZnFe2O4/RGO NCs by using a one-step hydrothermal process to assess the influence of RGO doping on the physicochemical properties and anticancer efficacy of ZnFe2O4 NPs. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray(EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), UV-vis spectroscopy, and Photoluminescence (PL) spectroscopy were employed to characterize prepared pure ZnFe2O4 NPs and ZnFe2O4/ RGO NCs. XRD results showed that the synthesized samples have high crystallinity. Furthermore, the average crystal sizes of ZnFe2O4 nanoparticles (NPs) and ZnFe2O4/RGO nanocomposites (NCs) were 51.08 nm and 54.36 nm, respectively. SEM images revealed that pure ZnFe2O4 NPs were spherical in shape with uniformly loaded on the surface of the RGO nanosheet. XPS and EDX analysis confirmed the elemental compositions of ZnFe2O4/RGO NCs. Elemental mapping of SEM shows that the elemental compositions (Zn, Fe, O, and C) were homogeneously distributed in ZnFe2O4/RGO NCs. The intensity of FT-IR spectra depicted that pure ZnFe2O4 NPs were successfully anchored into the RGO nanosheet. An optical study suggested that the band gap energy of ZnFe2O4/RGO NCs (1.61 eV) was lower than that of pure ZnFe2O4 NPs (1.96 eV). PL spectra indicated that the recombination rate of the ZnFe2O4/ RGO NCs was lower than ZnFe2O4 NPs. MTT assay was used to evaluate the anticancer performance of ZnFe2O4 /RGO NCs and pure ZnFe2O4NPs against human cancer cells. In vitro study indicates that ZnFe2O4 /RGO NCs have higher anticancer activity against human breast (MCF-7) and lung (A549) cancer cells as compared to pure form ZnFe2O4 NPs. This work suggests that RGO doping enhances the anticancer activity of ZnFe2O4NPs by tuning its optical behavior. This study warrants future research on potential therapeutic applications of these types of nanocomposites.

4.
ACS Omega ; 8(28): 25020-25033, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483253

RESUMEN

Graphene derivatives and metal oxide-based nanocomposites (NCs) are being studied for their diverse applications including gas sensing, environmental remediation, and biomedicine. The aim of the present work was to evaluate the effect of rGO and Bi2O3 integration on photocatalytic and anticancer efficacy. A novel Bi2O3-WO3/rGO NCs was successfully prepared via the precipitation method. X-ray crystallography (XRD) data confirmed the crystallographic structure and the phase composition of the prepared samples. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis confirmed the loading of Bi2O3-doped WO3 NPs on rGO sheets. Energy-dispersive X-ray (EDX) results confirmed that all elements of carbon (C), oxygen (O), tungsten (W), and bismuth (Bi) were present in Bi2O3-WO3/rGO NCs. The oxidation state and presence of elemental compositions in Bi2O3-WO3/rGO NCs were verified by the X-ray photoelectron spectroscopy (XPS) study. Raman spectra indicate a reduction in carbon-oxygen functional groups and an increase in the graphitic carbon percentage of the Bi2O3-WO3/rGO NCs. The functional group present in the prepared samples was examined by Fourier transform infrared (FTIR) spectroscopy. UV analysis showed that the band gap energy of the synthesized samples was slightly decreased with Bi2O3 and rGO doping. Photoluminescence (PL) spectra showed that the recombination rate of the electron-hole pair decreased with the dopants. Degradation of RhB dye under UV light was employed to evaluate photocatalytic performance. The results showed that the Bi2O3-WO3/rGO NCs have high photocatalytic activity with a degradation rate of up to 91%. Cytotoxicity studies showed that Bi2O3 and rGO addition enhance the anticancer activity of WO3 against human lung cancer cells (A549) and colorectal cancer cells (HCT116). Moreover, Bi2O3-WO3/rGO NCs showed improved biocompatibility in human umbilical vein endothelial cells (HUVECs) than pure WO3 NPs. The results of this work showed that Bi2O3-doped WO3 particles decorated on rGO sheets display improved photocatalytic and anticancer activity. The preliminary data warrants further research on such NCs for their applications in the environment and medicine.

5.
Carbohydr Res ; 532: 108877, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37473676

RESUMEN

Series of novel 1,2,3-triazole, and 1,2,3- triazoline glycosides (a-e) were efficiently synthesized starting from d-arabinose in an effort to synthesize a new type of hybrid molecules containing sugar azide. The key step involved is the introduction of a new group, ethylene glycol, to the anomeric site and protection of the hydroxyl groups with acetic anhydride. Following that, the acetyl group is converted into ethylene glycol to tosylate. Compound Azido ethyl-O-ß-d-arabinofuranoside 4 was synthesized with good yield by treating the derivative 3 with sodium azide, which displaced the tosylate 3 and replaced it with the azide group. The new glycosides were synthesized via a 1,3-dipolar cycloaddition reaction between the intermediate compound 4 and several alkenes and alkynes. The triazole and triazoline compounds were characterized by FT-IR, 1H NMR, 13C NMR, LC/MS-IT-TOF spectral, and C·H.N. analysis. The antimicrobial screening was assayed using the disc diffusion technique revealed moderate to high potential inhibitory values against three test microorganisms compared to standard drugs. Their pharmacokinetics evaluation also showed promising drug-likeness and ADME properties. Furthermore, density functional theory (DFT) was utilized to obtain the molecular geometry of the title compounds utilizing B3LYP/6-311G++ (d, p), molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) through the investigation of HOMO and LUMO orbitals, and energy gap value. A lower energy gap value denotes that electrons can be transported more easily, indicating that molecule (b) is more reactive than other compounds. Molecular docking analysis revealed that all the designed triazole and triazoline glycosides interacted strongly inside the active site of the enzyme (PDB ID: 2Q85). and exhibits high docking scores, higher than the standard drug. The range of docking scores is -7.99 kcal/mol compound (a) to -7.42 kcal/mol compound (e).


Asunto(s)
Glicósidos , Triazoles , Triazoles/farmacología , Triazoles/química , Simulación del Acoplamiento Molecular , Glicósidos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Azidas , Glicoles de Etileno
6.
Molecules ; 28(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446815

RESUMEN

The incorporation of graphene with metal oxide has been widely explored in various fields, including energy storage devices, optical applications, biomedical applications, and water remediation. This research aimed to assess the impact of reduced graphene oxide (RGO) doping on the photocatalytic and anticancer properties of In2O3 nanoparticles. Pure and In2O3/RGO nanocomposites were effectively synthesized using the single-step microwave hydrothermal process. XRD, TEM, SEM, EDX, XPS, Raman, UV-Vis, and PL spectroscopy were carefully utilized to characterize the prepared samples. XRD data showed that synthesized In2O3 nanoparticles had high crystallinity with a decreased crystal size after RGO doping. TEM and SEM images revealed that the In2O3 NPs were spherical and uniformly embedded onto the surface of RGO sheets. Elemental analysis of In2O3/RGO NC confirmed the presence of In, O, and C without impurities. Raman analysis indicated the successful fabrication of In2O3 onto the RGO surface. Uv-Vis analysis showed that the band gap energy was changed with RGO addition. Raman spectra confirmed that In2O3 nanoparticles were successfully anchored onto the RGO sheet. PL results indicated that the prepared In2O3/RGO NCs can be applied to enhance photocatalytic activity and biomedical applications. In the degradation experiment, In2O3/RGO NCs exhibited superior photocatalytic activity compared to that of pure In2O3. The degradation efficiency of In2O3/RGO NCs for MB dye was up to 90%. Biological data revealed that the cytotoxicity effect of In2O3/RGO NCs was higher than In2O3 NPs in human colorectal (HCT116) and liver (HepG2) cancer cells. Importantly, the In2O3/RGO NCs exhibited better biocompatibility against human normal peripheral blood mononuclear cells (PBMCs). All the results suggest that RGO addition improves the photocatalytic and anticancer activity of In2O3 NPs. This study highlights the potential of In2O3/RGO NCs as an efficient photocatalyst and therapeutic material for water remediation and biomedicine.


Asunto(s)
Grafito , Nanocompuestos , Humanos , Grafito/farmacología , Grafito/química , Azul de Metileno/farmacología , Azul de Metileno/química , Leucocitos Mononucleares , Microondas , Agua , Nanocompuestos/química
7.
Toxics ; 11(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37112570

RESUMEN

A review of recent literature suggests that bismuth oxide (Bi2O3, referred to as B in this article) nanoparticles (NPs) elicit an appreciable response only after a concentration above 40-50 µg/mL in different cells all having an epithelial origin, to the best of our knowledge. Here, we report the toxicological profile of Bi2O3 NPs (or BNPs) (71 ± 20 nm) in a human endothelial cell (HUVE cell line) in which BNPs exerted much steeper cytotoxicity. In contrast to a high concentration of BNPs (40-50 µg/mL) required to stimulate an appreciable toxicity in epithelial cells, BNPs induced 50% cytotoxicity in HUVE cells at a very low concentration (6.7 µg/mL) when treated for 24 h. BNPs induced reactive oxygen species (ROS), lipid peroxidation (LPO), and depletion of the intracellular antioxidant glutathione (GSH). BNPs also induced nitric oxide (NO,) which can result in the formation of more harmful species in a fast reaction that occurs with superoxide (O2•-). Exogenously applied antioxidants revealed that NAC (intracellular GSH precursor) was more effective than Tiron (a preferential scavenger of mitochondrial O2•-) in preventing the toxicity, indicating ROS production is extra-mitochondrial. Mitochondrial membrane potential (MMP) loss mediated by BNPs was significantly less than that of exogenously applied oxidant H2O2, and MMP loss was not as intensely reduced by either of the antioxidants (NAC and Tiron), again suggesting BNP-mediated toxicity in HUVE cells is extra-mitochondrial. When we compared the inhibitory capacities of the two antioxidants on different parameters of this study, ROS, LPO, and GSH were among the strongly inhibited biomarkers, whereas MMP and NO were the least inhibited group. This study warrants further research regarding BNPs, which may have promising potential in cancer therapy, especially via angiogenesis modulation.

8.
Nat Prod Res ; 37(13): 2263-2268, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36441059

RESUMEN

The Bombax ceiba L. tree is a member of the family Bombacaceae and the genus Bombax. Both Chinese and Indian traditional medicine have made extensive use of it in the treatment of sickness. Its chemical composition is still a mystery. B. ceiba roots methanol extract (BCRME) was analyzed by different chromatographic analytical techniques in order to identify its major chemical constituents. Twelve compounds and six compounds were identified from GC-MS and LC-MS analysis, respectively. This is the first report on the presence of lathodoratin, cedrene, 4H-1-benzopyran-4-one,8-[{dimethylamino} methyl]-7-methoxy-3-methyl-2-phenyl, asiatic acid, and (E)-2,4,4'-trihydroxylchalcone in B. ceiba roots. Methanol extract demonstrated noteworthy antibacterial activity against Staphylococcus aureus (MTCC96) (MIC: 100 µg/mL) compare to antibiotic ampicillin (MIC: 250 µg/mL) as well as the highest α-amylase inhibition (IC50=26.91 µg/mL) and α-glucosidase inhibition (IC50=21.21 µg/mL) effects, molecular docking study confirmed these findings, with some compounds having a very high docking score.


Asunto(s)
Bombax , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Bombax/química , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Liquida , Metanol , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Antibacterianos/química , Metabolómica
9.
Environ Sci Pollut Res Int ; 30(3): 6055-6067, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35986850

RESUMEN

Indium oxide nanoparticles (In2O3 NPs) are being investigated for a number of applications including gas-sensing, environmental remediation, and biomedicine. We aimed to examine the effect of silver (Ag) doping on photocatalytic and anticancer activity of In2O3 NPs. The Ag-doped (2%, 4%, and 6%weight) In2O3 NPs were synthesized by the photodeposition method. Prepared samples were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Vis spectroscopy, and the photoluminescence (PL). XRD data showed that Ag-doping increases the crystallinity of In2O3 NPs. SEM and TEM images indicated that In2O3 NPs have spherical morphology with smooth surfaces, and Ag-doping increases the size without affecting the particle's shape. XPS spectra showed the oxidation state and the presence of Ag in In2O3 NPs. Band gap energy of In2O3 NPs decreases with increasing the concentration of Ag (3.41 eV to 3.12 eV). The peak intensity of PL spectra of In2O3 NPs also reduces with the increment of Ag ions suggesting the hindrance of the recombination rate of e-/h+. The photocatalytic activity was measured by the degradation of Rh B dye under UV irradiation. The degradation efficiency of Ag-doped (6%) In2O3 NPs was 92%. Biochemical data indicated that Ag-doping enhances the anticancer performance of In2O3 NPs against human lung cancer cells (A549). Moreover, Ag-doped In2O3 NPs displayed excellent biocompatibility in normal human lung fibroblasts (IMR90). Overall, this study demonstrated that Ag-doping enhances the photocatalytic activity and anticancer efficacy of In2O3 NPs. This study warrants further investigation on the environmental and biomedical applications of Ag-In2O3 NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Plata/farmacología , Plata/química , Rayos Ultravioleta , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química
10.
ACS Omega ; 7(26): 22492-22499, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35811925

RESUMEN

In this work, the carbon monoxide (CO) detection property of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/poly(p-anisidine) (PEDOT:PSS/PPA) nanocomposite was systematically investigated at room temperature. The PEDOT:PSS/PPA nanocomposite was synthesized by the cost-effective "in situ chemical oxidation polymerization" technique. The electric, optical, spectroscopic, and structural properties of the as-prepared nanomaterials were analyzed with I-V, UV-vis, Raman, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) spectroscopies. Topological investigations of materials were conducted by atomic force microscopy (AFM). The gas-sensing performance of the PEDOT:PSS/PPA and PEDOT:PSS nanocomposites toward CO gas in the concentration range of 50-300 ppm at room temperature was explored, and their performances were compared. The PEDOT:PSS/PPA sensor shows a perfectly linear response to different concentrations (50-300 ppm) of CO gas (R 2 = 0.9885), and the response time and recovery time of the CO gas sensor (100 ppm) can be about 58 and 61 s, respectively, showing high sensitivity to CO gas and rapid response recovery with outstanding stability. Thus, the PEDOT:PSS/PPA-based sensors, with their impressive sensing performance, may give assurance for future high-performance CO-sensing applications.

11.
Heliyon ; 8(6): e09746, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35800717

RESUMEN

A series of novel compounds, mono-5-isoxazolidines, and bis (5-isoxazolidines) derivatives, were prepared as bicycloadducts. The new series of isoxazolidines were designed and synthesized via 1,3-dipolar cycloaddition reaction of nitrones with 3,9-Divinyl-2,4,8,10-tetra oxaspiro (5-5) undecane in the context of new antimicrobial and antioxidant drugs discovery and were fully characterized by FT-IR, 13C-NMR, and 1H-NMR spectroscopy. The physicochemical properties of all the novel cycloadducts, like bioactivity score and lipophilicity, were predicted using calculative methods. Similarly, the pharmacokinetic properties such as metabolism, absorption, distribution, and excretion (ADME) were also predicted. Most of the tested compounds exhibited antimicrobial properties to varying degrees against various bacterial species, including the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, and the Gram-positive bacteria Streptococcus pyogenus and Staphylococcus aureus, Antifungal properties were also observed against the tested fungi like Candida albicans, Aspergillus niger, and Aspergillus clavatus. The activity data exhibited that most compounds have high activity as compared to the standard drugs. In the range of graded doses, the results of some selected compounds revealed that some are high antioxidants while others are moderate or weak antioxidants. As evidenced by the molecular docking studies, the synthesized compounds showed good binding mode better than a standard drug, against the protein of a Pantothenate Synthetase enzyme (PDB-2X3F).

12.
Environ Sci Pollut Res Int ; 29(58): 87844-87857, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35821329

RESUMEN

Co-exposure of widely used single-walled carbon nanotubes (SWCNTs) and ubiquitous cadmium (Cd) to humans through ambient air is unavoidable. Studies on joint toxicity of SWCNTs and Cd in human cells are scarce. We aimed to investigate the joint effects of SWCNTs and Cd in human lung epithelial (A549) cells. Results showed that SWCNTs were safe while Cd induce significant toxicity to A549 cells. Remarkably, Cd-induced cell viability reduction, lactate dehydrogenase leakage, cell cycle arrest, dysregulation of apoptotic gene (p53, bax, bcl-2, casp3, and casp9), and mitochondrial membrane potential depletion were significantly mitigated following SWCNTs co-exposure. Cd-induced intracellular level of reactive oxygen species, hydrogen peroxide, and lipid peroxidation were significantly attenuated by SWCNT co-exposure. Moreover, glutathione depletion and lower activity of antioxidant enzymes after Cd exposure were also effectively abrogated by co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry study indicated that higher adsorption of Cd on SCWNTs might decreased cellular uptake and the toxic potential of Cd in A549 cells. Our work warranted further research to explore the potential mechanism of joint effects of SWCNTs and Cd at in vivo levels.


Asunto(s)
Neoplasias Pulmonares , Nanotubos de Carbono , Humanos , Cadmio/toxicidad , Nanotubos de Carbono/toxicidad , Estrés Oxidativo , Apoptosis
13.
Toxics ; 10(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35622663

RESUMEN

In this study, a nanocomposite of cerium oxide-zinc (CeO2-Zn; 26 ± 11 nm) based on the antioxidant rare-earth cerium oxide (CeO2) nanoparticles (NPs) with the modifier zinc (Zn) was synthesized by sintering method and characterized. Its bio-response was examined in human umbilical-vein-derived endothelial (HUVE) cells to get insight into the components of vascular system. While NPs of CeO2 did not significantly alter cell viability up to a concentration of 200 µg/mL for a 24 h exposure, 154 ± 6 µg/mL of nanocomposite CeO2-Zn induced 50% cytotoxicity. Mechanism of cytotoxicity occurring due to nanocomposite by its Zn content was compared by choosing NPs of ZnO, possibly the closest nanoparticulate form of Zn. ZnO NPs lead to the induction of higher reactive oxygen species (ROS) (DCF-fluorescence), steeper depletion in antioxidant glutathione (GSH) and a greater loss of mitochondrial membrane potential (MMP) as compared to that induced by CeO2-Zn nanocomposite. Nanocomposite of CeO2-Zn, on the other hand, lead to significant higher induction of superoxide radical (O2•-, DHE fluorescence), nitric oxide (NO, determined by DAR-2 imaging and Griess reagent) and autophagic vesicles (determined by Lysotracker and monodansylcadeverine probes) as compared to that caused by ZnO NP treatment. Moreover, analysis after triple staining (by annexin V-FITC, PI, and Hoechst) conducted at their respective IC50s revealed an apoptosis mode of cell death due to ZnO NPs, whereas CeO2-Zn nanocomposite induced a mechanism of cell death that was significantly different from apoptosis. Our findings on advanced biomarkers such as autophagy and mode of cell death suggested the CeO2-Zn nanocomposite might behave as independent nanostructure from its constituent ones. Since nanocomposites can behave independently of their constituent NPs/elements, by creating nanocomposites, NP versatility can be increased manifold by just manipulating existing NPs. Moreover, data in this study can furnish early mechanistic insight about the potential damage that could occur in the integrity of vascular systems.

14.
Polymers (Basel) ; 14(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631918

RESUMEN

Metal oxide and graphene derivative-based nanocomposites (NCs) are attractive to the fields of environmental remediation, optics, and cancer therapy owing to their remarkable physicochemical characteristics. There is limited information on the environmental and biomedical applications of tin oxide-reduced graphene oxide nanocomposites (SnO2-rGO NCs). The goal of this work was to explore the photocatalytic activity and anticancer efficacy of SnO2-rGO NCs. Pure SnO2 NPs and SnO2-rGO NCs were prepared using the one-pot hydrothermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Vis spectrometry, photoluminescence (PL), and Raman scattering microscopy were applied to characterize the synthesized samples. The crystallite size of the SnO2 NPs slightly increased after rGO doping. TEM and SEM images show that the SnO2 NPs were tightly anchored onto the rGO sheets. The XPS and EDX data confirmed the chemical state and elemental composition of the SnO2-rGO NCs. Optical data suggest that the bandgap energy of the SnO2-rGO NCs was slightly lower than for the pure SnO2 NPs. In comparison to pure SnO2 NPs, the intensity of the PL spectra of the SnO2-rGO NCs was lower, indicating the decrement of the recombination rate of the surfaces charges (e-/h+) after rGO doping. Hence, the degradation efficiency of methylene blue (MB) dye by SnO2-rGO NCs (93%) was almost 2-fold higher than for pure SnO2 NPs (54%). The anticancer efficacy of SnO2-rGO NCs was also almost 1.5-fold higher against human liver cancer (HepG2) and human lung cancer (A549) cells compared to the SnO2 NPs. This study suggests a unique method to improve the photocatalytic activity and anticancer efficacy of SnO2 NPs by fusion with graphene derivatives.

15.
ACS Omega ; 7(8): 7103-7115, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252701

RESUMEN

ZnO nanoparticles (NPs) have attracted great attention in cancer therapy because of their novel and tailorable physicochemical features. Pure ZnO NPs, molybdenum (Mo)-doped ZnO NPs, and Mo-ZnO/reduced graphene oxide nanocomposites (Mo-ZnO/RGO NCs) were prepared using a facile, inexpensive, and eco-friendly approach using date palm (Phoenix dactylifera L.) fruit extract. Anticancer efficacy of green synthesized NPs/NCs was examined in two different cancer cells. The potential mechanism of the anticancer activity of green synthesized NPs/NCs was explored through oxidative stress and apoptosis. The syntheses of pure ZnO NPs, Mo-ZnO NPs, and Mo-ZnO/RGO NCs were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and photoluminescence (PL). Dynamic light scattering (DLS) study indicated the excellent colloidal stability of green prepared samples. Mo-ZnO/RGO NCs exhibited threefold higher anticancer activity in human colon (HCT116) and breast (MCF7) cancer cells as compared to pure ZnO NPs. The anticancer activity of Mo-ZnO/RGO NCs was mediated through reactive oxygen species, p53, and the caspase-3 pathway. Moreover, cytocompatibility of Mo-ZnO/RGO NCs in human normal colon epithelial (NCM460) and normal breast epithelial cells (MCF10A) was much better than those of pure ZnO NPs. Altogether, green stabilized Mo-ZnO/RGO NCs exhibited enhanced anticancer performance and improved cytocompatibility because of green mediated good synergism between ZnO, Mo, and RGO. This study suggested the high nutritional value fruit-based facile preparation of ZnO-based nanocomposites for cancer therapy.

16.
Methods ; 199: 28-36, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33930572

RESUMEN

Drug resistance and inability to distinguish between cancerous and non-cancerous cells are important obstacles in the treatment of cancer. Zinc oxide nanoparticles (ZnO NPs) is now emerging as a crucial material to challenge this global issue due to its tunable properties. Developing an effective, inexpensive, and eco-friendly method in order to tailor the properties of ZnO NPs with enhanced anticancer efficacy is still challenging. For the first time, we reported a facile, inexpensive, and eco-friendly approach for green synthesis of ZnO-reduced graphene oxide nanocomposites (ZnO-RGO NCs) using garlic clove extract. Garlic has been playing one of the most important dietary and medicinal roles for humans since centuries. We aimed to minimize the use of toxic chemicals and enhance the anticancer potential of ZnO-RGO NCs with minimum side effects to normal cells. Aqueous extract of garlic clove was used as reducing and stabilizing agent for green synthesis of ZnO-RGO NCs from the zinc nitrate and graphene oxide (GO) precursors. A potential mechanism of ZnO-RGO NCs synthesis with garlic clove extract was also proposed. Preparation of pure ZnO NPs and ZnO-RGO NCs was confirmed by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS). The in vitro study showed that ZnO-RGO NCs induce two-fold higher cytotoxicity in human breast cancer (MCF7) and human colorectal cancer (HCT116) cells as compared to pure ZnO NPs. Besides, biocompatibility of ZnO-RGO NCs in non-cancerous human normal breast (MCF10A) and normal colon epithelial (NCM460) cells was higher than those of pure ZnO NPs. This work highlighted a facile and inexpensive green approach for the preparation of ZnO-RGO NCs with enhanced anticancer activity and improved biocompatibility.


Asunto(s)
Nanocompuestos , Nanopartículas , Óxido de Zinc , Humanos , Microscopía Electrónica de Transmisión , Nanocompuestos/química , Nanopartículas/química , Difracción de Rayos X , Óxido de Zinc/química , Óxido de Zinc/farmacología
17.
Nanomaterials (Basel) ; 11(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34835679

RESUMEN

Due to unique physicochemical properties, magnesium oxide nanoparticles (MgO NPs) have shown great potential for various applications, including biomedical and environmental remediation. Moreover, the physiochemical properties of MgO NPs can be tailored by metal ion doping that can be utilized in photocatalytic performance and in the biomedical field. There is limited study on the photocatalytic activity and biocompatibility of silver (Ag)-doped MgO NPs. This study was planned for facile synthesis, characterization, and photocatalytic activity of pure and silver (Ag)-doped MgO NPs. In addition, cytotoxicity of pure and Ag-doped MgO NPs was assessed in human normal umbilical vein endothelial cells (HUVECs). Pure MgO NPs and Ag-doped (1, 2, 5, and 7.5 mol%) MgO NPs were prepared via a simple sol-gel procedure. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared samples. XRD results showed the preparation of highly crystalline NPs with no impurity peaks. TEM and SEM studies indicate smooth surfaces with almost spherical morphology of MgO NPs, and Ag-doping did not change the morphology. Elemental composition study suggested that Ag is uniformly distributed in MgO particles. Intensity of the PL spectra of MgO NPs decreased with increasing the concentration of Ag dopants. In comparison to pure MgO NPs, Ag-MgO NPs showed higher degradation of methylene blue (MB) dye under UV irradiation. The improved photocatalytic activity of Ag-MgO NPs was related to the effect of dopant concentration on reducing the recombination between electrons and holes. Cytotoxicity studies showed good biocompatibility of pure and Ag-doped MgO NPs with human normal umbilical vein endothelial cells (HUVECs). These results highlighted the potential of Ag-doped MgO NPs in environmental remediation.

18.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641166

RESUMEN

The efficacy of current cancer therapies is limited due to several factors, including drug resistance and non-specific toxic effects. Due to their tuneable properties, silver nanoparticles (Ag NPs) and graphene derivative-based nanomaterials are now providing new hope to treat cancer with minimum side effects. Here, we report a simple, inexpensive, and eco-friendly protocol for the preparation of silver-reduced graphene oxide nanocomposites (Ag/RGO NCs) using orange peel extract. This work was planned to curtail the use of toxic chemicals, and improve the anticancer performance and cytocompatibility of Ag/RGO NCs. Aqueous extract of orange peels is abundant in phytochemicals that act as reducing and stabilizing agents for the green synthesis of Ag NPs and Ag/RGO NCs from silver nitrate and graphene oxide (GO). Moreover, the flavonoid present in orange peel is a potent anticancer agent. Green-prepared Ag NPs and Ag/RGO NCs were characterized by UV-visible spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). The results of the anticancer study demonstrated that the killing potential of Ag/RGO NCs against human breast cancer (MCF7) and lung cancer (A549) cells was two-fold that of pure Ag NPs. Moreover, the cytocompatibility of Ag/RGO NCs in human normal breast epithelial (MCF10A) cells and normal lung fibroblasts (IMR90) was higher than that of pure Ag NPs. This mechanistic study indicated that Ag/RGO NCs induce toxicity in cancer cells through pro-oxidant reactive oxygen species generation and antioxidant glutathione depletion and provided a novel green synthesis of Ag/RGO NCs with highly effective anticancer performance and better cytocompatibility.

19.
Molecules ; 26(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500851

RESUMEN

The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1ß and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•-), hydroxyl radical, etc.) by DCFH-DA and used a O2•- specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•- and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•- production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.


Asunto(s)
Antiinflamatorios/química , Cerio/química , Nanopartículas del Metal/química , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Antiinflamatorios/farmacología , Supervivencia Celular , Cerio/farmacología , Citocinas/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/metabolismo , Lipopolisacáridos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
20.
ACS Omega ; 6(27): 17353-17361, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34278121

RESUMEN

Bismuth (III) oxide nanoparticles (Bi2O3 NPs) have shown great potential for biomedical applications because of their tunable physicochemical properties. In this work, pure and Zn-doped (1 and 3 mol %) Bi2O3 NPs were synthesized by a facile chemical route and their cytotoxicity was examined in cancer cells and normal cells. The X-ray diffraction results show that the tetragonal phase of ß-Bi2O3 remains unchanged after Zn-doping. Transmission electron microscopy and scanning electron microscopy images depicted that prepared particles were spherical with smooth surfaces and the homogeneous distribution of Zn in Bi2O3 with high-quality lattice fringes without distortion. Photoluminescence spectra revealed that intensity of Bi2O3 NPs decreases with increasing level of Zn-doping. Biological data showed that Zn-doped Bi2O3 NPs induce higher cytotoxicity to human lung (A549) and liver (HepG2) cancer cells as compared to pure Bi2O3 NPs, and cytotoxic intensity increases with increasing concentration of Zn-doping. Mechanistic data indicated that Zn-doped Bi2O3 NPs induce cytotoxicity in both types of cancer cells through the generation of reactive oxygen species and caspase-3 activation. On the other hand, biocompatibility of Zn-doped Bi2O3 NPs in normal cells (primary rat hepatocytes) was greater than that of pure Bi2O3 NPs and biocompatibility improves with increasing level of Zn-doping. Altogether, this is the first report highlighting the role of Zn-doping in the anticancer activity of Bi2O3 NPs. This study warrants further research on the antitumor activity of Zn-doped Bi2O3 NPs in suitable in vivo models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...