Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 254: 108309, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002431

RESUMEN

BACKGROUND AND OBJECTIVE: This paper proposes a fully automated and unsupervised stochastic segmentation approach using two-level joint Markov-Gibbs Random Field (MGRF) to detect the vascular system from retinal Optical Coherence Tomography Angiography (OCTA) images, which is a critical step in developing Computer-Aided Diagnosis (CAD) systems for detecting retinal diseases. METHODS: Using a new probabilistic model based on a Linear Combination of Discrete Gaussian (LCDG), the first level models the appearance of OCTA images and their spatially smoothed images. The parameters of the LCDG model are estimated using a modified Expectation Maximization (EM) algorithm. The second level models the maps of OCTA images, including the vascular system and other retina tissues, using MGRF with analytically estimated parameters from the input images. The proposed segmentation approach employs modified self-organizing maps as a MAP-based optimizer maximizing the joint likelihood and handles the Joint MGRF model in a new, unsupervised way. This approach deviates from traditional stochastic optimization approaches and leverages non-linear optimization to achieve more accurate segmentation results. RESULTS: The proposed segmentation framework is evaluated quantitatively on a dataset of 204 subjects. Achieving 0.92 ± 0.03 Dice similarity coefficient, 0.69 ± 0.25 95-percentile bidirectional Hausdorff distance, and 0.93 ± 0.03 accuracy, confirms the superior performance of the proposed approach. CONCLUSIONS: The conclusions drawn from the study highlight the superior performance of the proposed unsupervised and fully automated segmentation approach in detecting the vascular system from OCTA images. This approach not only deviates from traditional methods but also achieves more accurate segmentation results, demonstrating its potential in aiding the development of CAD systems for detecting retinal diseases.


Asunto(s)
Algoritmos , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Vasos Retinianos/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Cadenas de Markov , Enfermedades de la Retina/diagnóstico por imagen , Modelos Estadísticos , Diagnóstico por Computador/métodos , Angiografía/métodos
2.
Cancers (Basel) ; 15(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958390

RESUMEN

Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating communication between radiologists and clinicians; however, an update is now imperative to encompass the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review article, we provide a concise history of BI-RADS, delve into advanced mammography techniques, ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging (MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor aims to enhance radiologists' proficiency in catering to the personalized needs of breast cancer patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer, as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists' capabilities and ameliorating patient outcomes in the realm of breast cancer management.

3.
Sensors (Basel) ; 22(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35591182

RESUMEN

Diabetic retinopathy (DR) is a devastating condition caused by progressive changes in the retinal microvasculature. It is a leading cause of retinal blindness in people with diabetes. Long periods of uncontrolled blood sugar levels result in endothelial damage, leading to macular edema, altered retinal permeability, retinal ischemia, and neovascularization. In order to facilitate rapid screening and diagnosing, as well as grading of DR, different retinal modalities are utilized. Typically, a computer-aided diagnostic system (CAD) uses retinal images to aid the ophthalmologists in the diagnosis process. These CAD systems use a combination of machine learning (ML) models (e.g., deep learning (DL) approaches) to speed up the diagnosis and grading of DR. In this way, this survey provides a comprehensive overview of different imaging modalities used with ML/DL approaches in the DR diagnosis process. The four imaging modalities that we focused on are fluorescein angiography, fundus photographs, optical coherence tomography (OCT), and OCT angiography (OCTA). In addition, we discuss limitations of the literature that utilizes such modalities for DR diagnosis. In addition, we introduce research gaps and provide suggested solutions for the researchers to resolve. Lastly, we provide a thorough discussion about the challenges and future directions of the current state-of-the-art DL/ML approaches. We also elaborate on how integrating different imaging modalities with the clinical information and demographic data will lead to promising results for the scientists when diagnosing and grading DR. As a result of this article's comparative analysis and discussion, it remains necessary to use DL methods over existing ML models to detect DR in multiple modalities.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Retinopatía Diabética/diagnóstico por imagen , Angiografía con Fluoresceína/efectos adversos , Humanos , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
4.
Diagnostics (Basel) ; 11(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34943550

RESUMEN

In developed countries, age-related macular degeneration (AMD), a retinal disease, is the main cause of vision loss in the elderly. Optical Coherence Tomography (OCT) is currently the gold standard for assessing individuals for initial AMD diagnosis. In this paper, we look at how OCT imaging can be used to diagnose AMD. Our main aim is to examine and compare automated computer-aided diagnostic (CAD) systems for diagnosing and grading of AMD. We provide a brief summary, outlining the main aspects of performance assessment and providing a basis for current research in AMD diagnosis. As a result, the only viable alternative is to prevent AMD and stop both this devastating eye condition and unwanted visual impairment. On the other hand, the grading of AMD is very important in order to detect early AMD and prevent patients from reaching advanced AMD disease. In light of this, we explore the remaining issues with automated systems for AMD detection based on OCT imaging, as well as potential directions for diagnosis and monitoring systems based on OCT imaging and telemedicine applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...