Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25579, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356523

RESUMEN

Pure and manganese-doped titanium dioxide nanoparticles (MnTiO2-NPs) were synthesized by the defect-oriented hydrothermal approach. The synthesized material was then characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy (UV-Vis). The agar well diffusion method assessed the antibacterial efficiency of TiO2 and MnTiO2-NPs against E. coli and S. aureus. Zone of inhibition (ZOI) formed by pure TiO2 was observed as 12 mm and 11.5 mm against E. coli and S. aureus, while for MnTiO2-NPs it was observed as 19 mm (E. coli) and 21 mm (S. aureus). The concentration of synthesized nanoparticles (10 mg/ml, and 20 mg/ml) was used for antibacterial studies. The efficacy of the pure and MnTiO2-NPs as an active photocatalyst for the degradation of methylene blue (MB) dye was also assessed using a UV light. It was observed that the photodegradation efficiency of 1 g of MnTiO2-NPs was higher than the same amount of pure TiO2. The results suggest that the photocatalyst concentration directly impacts the photodegradation of MB dye. The pH value was found to influence the photodegradation of MB dye at higher pH values. Based on the obtained results, MnTiO2-NPs were observed as a promising agent for microbial resistance and water remediation.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38063697

RESUMEN

This study presents a novel method for the photocatalytic synthesis of 4-aryl-6-(3-coumarinyl) pyrimidin-2 (1H)-ones (a coumarin derivative) using strawberry dye-sensitized TiO2 (SD-TiO2) under visible light. The synthesis of 4-aryl-6-(3-coumarinyl) pyrimidin-2 (1H)-ones was achieved through a three-component, one-pot condensation reaction involving 3-acetyl coumarin, aldehydes, and urea, utilizing SD-TiO2 as a reusable and innovative photocatalyst at room temperature. The resulting SD-TiO2 photocatalyst was thoroughly characterized using FT-IR, XPS, XRD, SEM, and BET. The efficacy of SD-TiO2 was evaluated by comparing it to pristine TiO2 in terms of photocatalytic activity, and the optimal conditions for the synthesis process were determined. Notably, the SD-TiO2 photocatalyst exhibited a maximum yield of the compound, reaching up to 96% in just 30 min with a catalyst concentration of 1 mg/mL. This yield surpasses traditional thermal procedures employing reflux conditions, where 1 mg/mL of SD-TiO2 is sufficient to complete the reaction. The resulting 4-aryl-6-(3-coumarinyl) pyrimidin-2 (1H)-ones were further characterized using 1H-NMR and 13C-NMR. Moreover, the stability of the SD-TiO2 photocatalyst was confirmed through recyclability experiments and spectroscopic characterization, demonstrating its practicality for up to three consecutive reaction cycles.

3.
ACS Omega ; 8(42): 39186-39193, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901509

RESUMEN

The current investigation deals with the treatment of water pollution that is caused by the leaching of nickel ions from the metallurgical industry and new-energy batteries. Therefore, an eco-friendly treatment of nickel through the use of a composite of cotton stalk biochar with nanozerovalent copper has been presented in this investigation signifying the impact of zerovalent copper in enhancing the adsorption capacity of biochar for nickel adsorption. Thermogravimetric analysis data showed the adsorbent to be significantly stable in the higher thermal range, whereas transmission electron microscopy analysis confirmed the particles to be 27 nm and also showed the cubic geometry of the particles. A much closer scanning electron microscopy analysis shows the morphology of particles to be cubic in shape. Batch adsorption indicated a positive influence of pH increase on adsorption due to the electrostatic attraction between positive nickel ions and post point of zero charge (pHPZC) negative surface of copper biochar composite (pH > 5.5). A high adsorption rate was observed in the first 60 min, whereas adsorption increased with the increase in temperature from 303 to 318 K. Kinetic modeling confirmed the pseudo-first-order to fit best to the data. The apparent activation energy (11.96 kJ mol-1) is indicative of the chemical nature of the process. The adsorption data fitted well to the Langmuir adsorption model. The negative values of apparent ΔG° and the positive values of apparent ΔH° indicate the spontaneity and endothermicity of the process, respectively, whereas the positive values of apparent ΔS° point toward increased randomness during the process. Postadsorption XPS suggests the adsorption of nickel on the surface of biochar composites in the form of Ni(OH)2 and NiO(OH).

4.
Nanomaterials (Basel) ; 13(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686970

RESUMEN

Thermocatalytic methane decomposition (TCMD) involving metal oxides is a more environmentally friendly and cost-effective strategy for scalable hydrogen fuel production compared to traditional methane steam reforming (MSR), as it requires less energy and produces fewer CO/CO2 emissions. However, the unsupported metal oxide catalysts (such as α-Fe2O3) that would be suited for this purpose exhibit poor performance in TCMD. To overcome this issue, a novel strategy was developed as a part of this work, whereby oxygen vacancies (OVs) were introduced into unsupported α-Fe2O3 nanoparticles (NPs). Systematic characterization of the obtained materials through analytical techniques demonstrated that mesoporous nanostructured unsupported α-Fe2O3 with abundant oxygen vacancies (OV-rich α-Fe2O3 NPs) could be obtained by direct thermal decomposition of ferric nitrate at different calcination temperatures (500, 700, 900, and 1100 °C) under ambient conditions. The thermocatalytic activity of the resulting OV-rich α-Fe2O3 NPs was assessed by evaluating the methane conversion, hydrogen formation rate, and amount of carbon deposited. The TCMD results revealed that 900 °C was the most optimal calcination temperature, as it led to the highest methane conversion (22.5%) and hydrogen formation rate (47.0 × 10-5 mol H2 g-1 min-1) after 480 min. This outstanding thermocatalytic performance of OV-rich α-Fe2O3 NPs is attributed to the presence of abundant OVs on their surfaces, thus providing effective active sites for methane decomposition. Moreover, the proposed strategy can be cost-effectively scaled up for industrial applications, whereby unsupported metal oxide NPs can be employed for energy-efficient thermocatalytic CH4 decomposition into hydrogen fuel and carbon nanomaterials.

5.
Materials (Basel) ; 16(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37049129

RESUMEN

The chemical industry is one of the main fossil fuel consumers, so its reliance on sustainable and renewable resources such as wind and solar energy should be increased to protect the environment. Accordingly, solar-driven thermocatalytic synthesis of octahydroquinazolinone using polyvinylchloride (PVC)-supported aluminum oxide (Al2O3) as a catalyst under natural sunlight is proposed in this work. The Al2O3/PVC catalysts were characterized by FT-IR, SEM, BET, XRD, and XPS techniques. The obtained results indicate that the yield and reaction time can be modified by adjusting the molar ratio of the catalyst. To investigate the stability of the catalyst, the spent catalyst was reused in several reactions. The results indicated that, when a 50% Al2O3 catalyst is employed in an absolute solar heat, it performs exceptionally well in terms of yield (98%) and reaction time (35 min). Furthermore, the reaction times and yield of octahydroquinazolinone derivatives with an aryl moiety were superior to those of heteroaryl. All the synthesized compounds were well characterized by FT-IR, 1H-NMR, and 13C-NMR. The current work introduces a new strategy to use solar heat for energy-efficient chemical reactions using a cost-effective, recyclable environmentally friendly PVC/Al2O3 catalyst that produces a high yield.

6.
Int J Biol Macromol ; 232: 123476, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36731696

RESUMEN

With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Impresión Tridimensional , Ingeniería de Tejidos , Tecnología
7.
Int J Biol Macromol ; 230: 123131, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610570

RESUMEN

3-D Bioprinting is employed as a novel approach in biofabrication to promote skin regeneration following chronic-wounds and injury. A novel bioink composed of carbohydrazide crosslinked {polyethylene oxide-co- Chitosan-co- poly(methylmethacrylic-acid)} (PEO-CS-PMMA) laden with Nicotinamide and human dermal fibroblast was successfully synthesized via Free radical-copolymerization at 73 °C. The developed bioink was characterized in term of swelling, structural-confirmation by solid state 13C-Nuclear Magnetic Resonance (NMR), morphology, thermal, 3-D Bioprinting via extrusion, rheological and interaction with DNA respectively. The predominant rate of gelation was attributed to the electrostatic interactions between cationic CS and anionic PMMA pendant groups. The morphology of developed bioink presented a porous architecture satisfying the cell and growth-factor viability across the barrier. The thermal analysis revealed two-step degradation with 85 % weight loss in term of decomposition and molecular changes in the bioink moieties By applying low pressure in the range of 25-50 kPa, the optimum reproducibility and printability were determined at 37 °C in the viscosity range of 500-550 Pa. s. A higher survival rate of 92 % was observed for (PEO-CS-PMMA) in comparison to 67 % for pure chitosan built bioink. A binding constant of K ≈ 1.8 × 106 M-1 recognized a thermodynamically stable interaction of (PEO-CS-PMMA) with the Salmon-DNA. Further, the addition of PEO (5.0 %) was addressed with better self-healing and printability to produce skin-tissue constructs to replace the infected skin in human.


Asunto(s)
Bioimpresión , Quitosano , Humanos , Hidrogeles/química , Polimetil Metacrilato , Reproducibilidad de los Resultados , Impresión Tridimensional , Tecnología , Andamios del Tejido/química , Ingeniería de Tejidos
8.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746034

RESUMEN

In the current study, lipid-polymer hybrid nanoparticles (LPHNPs) fabricated with lipoid-90H and chitosan, sunitinib malate (SM), an anticancer drug was loaded using lecithin as a stabilizer by employing emulsion solvent evaporation technique. Four formulations (SLPN1-SLPN4) were developed by varying the concentration of chitosan polymer. Based on particle characterization, SLPN4 was optimized with size (439 ± 5.8 nm), PDI (0.269), ZP (+34 ± 5.3 mV), and EE (83.03 ± 4.9%). Further, the optimized formulation was characterized by FTIR, DSC, XRD, SEM, and in vitro release studies. In-vitro release of the drug from SPN4 was found to be 84.11 ± 2.54% as compared with pure drug SM 24.13 ± 2.67%; in 48 h, release kinetics followed the Korsmeyer-Peppas model with Fickian release mechanism. The SLPN4 exhibited a potent cytotoxicity against MCF-7 breast cancer, as evident by caspase 3, 9, and p53 activities. According to the findings, SM-loaded LPHNPs might be a promising therapy option for breast cancer.

9.
Materials (Basel) ; 14(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207950

RESUMEN

Cobalt (Co) doped zinc oxide (ZnO) microcrystals (MCs) are prepared by using the hydrothermal method from the precursor's mixture of zinc chloride (ZnCl2), cobalt-II chloride hexahydrate (CoCl2·6H2O), and potassium hydroxide (KOH). The smooth round cylindrical morphologies of the synthesized microcrystals of Co-doped ZnO show an increase in absorption with the cobalt doping. The antibacterial activity of the as-obtained Co-doped ZnO-MCs was tested against the bacterial strains of gram-negative (Escherichia coli, Klebsiella pneumonia) and gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes) via the agar well diffusion method. The zones of inhibition (ZOI) for Co-doped ZnO-MCs against E. coli and K. pneumoniae were found to be 17 and 19 mm, and 15 and 16 mm against S. Aureus and S. pyogenes, respectively. The prepared Co-doped ZnO-MCs were thus established as a probable antibacterial agent against gram-negative bacterial strains.

10.
PLoS One ; 16(5): e0251082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989295

RESUMEN

A viable hydrothermal technique has been explored for the synthesis of copper doped Zinc oxide nanoparticles (Cu-doped ZnO-NPs) based on the precursor's mixture of Copper-II chloride dihydrate (CuCl2.2H2O), Zinc chloride (ZnCl2), and potassium hydroxide (KOH). X-ray diffraction (XRD) reported the hexagonal wurtzite structure of the synthesized Cu-doped ZnO-NPs. The surface morphology is checked via field emission scanning electron microscopy (FE-SEM), whereas, the elemental compositions of the samples were confirmed by Raman, and X-ray photoelectron spectroscopy (XPS), respectively. The as-obtained ZnO-NPs and Cu-doped ZnO-NPs were then tested for their antibacterial activity against clinical isolates of Gram-positive (Staphylococcus aureus, Streptococcus pyogenes) and Gram-negative (Escherichia coli, Klebsiella pneumonia) bacteria via agar well diffusion method. The zone of inhibition (ZOI) for Cu-doped ZnO-NPs was found to be 24 and 19 mm against S. Aureus and S. pyogenes, and 18 and 11 mm against E. coli and K. pneumoniae, respectively. The synthesized Cu-doped ZnO-NPs can thus be found as a potential nano antibiotic against Gram-positive multi-drug resistant bacterial strains.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos , Óxido de Zinc/farmacología , Cobre/química , Cobre/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Humanos , Klebsiella pneumoniae/aislamiento & purificación , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/aislamiento & purificación , Streptococcus pyogenes/aislamiento & purificación
11.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578945

RESUMEN

Copper oxide and Zinc (Zn)-doped Copper oxide nanostructures (CuO-NSs) are successfully synthesized by using a hydrothermal technique. The as-obtained pure and Zn-doped CuO-NSs were tested to study the effect of doping in CuO on structural, optical, and antibacterial properties. The band gap of the nanostructures is calculated by using the Tauc plot. Our results have shown that the band gap of CuO reduces with the addition of Zinc. Optimization of processing conditions and concentration of precursors leads to the formation of pine needles and sea urchin-like nanostructures. The antibacterial properties of obtained Zn-doped CuO-NSs are observed against Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria via the agar well diffusion method. Zn doped s are found to have more effective bacterial resistance than pure CuO. The improved antibacterial activity is attributed to the reactive oxygen species (ROS) generation.

12.
Saudi Pharm J ; 26(8): 1120-1126, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30532632

RESUMEN

3-Benzyl-2-((3-methoxybenzyl)thio)benzo[g]quinazolin-4(3H)-one was previously synthesized and proved by physicochemical analyses (HRMS, 1H and 13C NMR). The target compound was examined for its radioactivity and the results showed that benzo[g]quinazoline was successfully labeled with radioactive iodine using NBS via an electrophilic substitution reaction. The reaction parameters that affected the labeling yield such as concentration, pH and time were studied to optimize the labeling conditions. The radiochemical yield was 91.2 ±â€¯1.22% and the in vitro studies showed that the target compound was stable for up to 24 h. The thyroid was among the other organs in which the uptake of 125I-benzoquinazoline has increased significantly over the time up to 4.1%. The tumor uptake was 6.95%. Radiochemical and metabolic stability of the benzoquinazoline in vivo/in vitro and biodistribution studies provide some insights about the requirements for developing more potent radiopharmaceutical for targeting the tumor cells.

13.
Cell Biochem Biophys ; 76(3): 377-389, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30062659

RESUMEN

Twenty-two 2-thiophen-naphtho(benzo)oxazinone derivatives are prepared using 3-amino-2-naphthoic and 5-nitroanthranilic acids as building blocks. The target compounds (1-22) were evaluated quantitatively for their cytotoxic effects in vitro against three cancer cell lines, including the lung A549, the hepatocyte HepG2, and the breast MCF-7 carcinoma cells. Compounds 1, 12, 14, and 21 were found to exhibit remarkable cytotoxicity against the tested cancer cell lines. Compound 21 has shown the highest activity against A549 and MCF-7 (IC50: 9.8 & 3.6 µg mL-1) whereas 1 (IC50: 5.9 µg mL-1) and 5 (3.6 µg mL-1) were the most active against HepG2. To elucidate the structure-cytotoxicity relationships of the synthesized compounds, a number of their chemical descriptors are determined including electronic, steric and hydrophobicity descriptors. The electronic properties were calculated through density functional theory (DFT) calculations at the B3LYP/6-31 + G(d,p). The impact of the chosen descriptors is evaluated statistically through simple and multiple linear regression analyses (SLR and MLR). SLR analyses reveal that the impact of each descriptor on the cell lines are relatively weak except for MCF-7, where hardness and softness show moderate correlations with correlation coefficients higher than 60%. The correlations were improved by considering MLR analyses (R2 ≥ 90%), which showed that the cytotoxicity of synthesized compounds is correlated with their combined descriptors hardness, softness, electrophiliciy and hydrophobicity (LogP).


Asunto(s)
Antineoplásicos/química , Oxazinas/química , Teoría Cuántica , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Modelos Lineales , Células MCF-7 , Oxazinas/síntesis química , Oxazinas/farmacología , Relación Estructura-Actividad
14.
Bioorg Chem ; 75: 291-302, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29065322

RESUMEN

A series of sulfonyl hydrazones derived from 3-formylchromone was synthesized and discovered to be effective, non-selective inhibitors of monoamine oxidases (MAO-A and MAO-B). The compounds are easily (synthetically) accessible in high yields, by simple condensation of 4-methylbenzenesulfonohydrazide with different (un)substituted 3-formylchromones. All compounds had IC50 values in lower micro-molar range (IC50 = 0.33-7.14 µM for MAO-A, and 1.12-3.56 µM for MAO-B). The most active MAO-B inhibitor was N'-[(E)-(6-fluoro-4-oxo-4H-chromen-3-yl)methylidene]-4-methylbenzenesulfonohydrazide (3e) with IC50 value of 1.12 ±â€¯0.02 µM, and N'-[(E)-(6-chloro-4-oxo-4H-chromen-3-yl)methylidene]-4-methylbenzenesulfonohydrazide (3f) was the most active MAO-A inhibitor with IC50 value of 0.33 ±â€¯0.01 µM. From enzyme kinetic studies, the mode of inhibition against MAO-B was found to be competitive, whereas against MAO-A, it was found to be non-competitive. Molecular docking studies indicated a new binding pocket for non-competitive MAO-A inhibitors. The activity of these compounds is optimally combined with highly favorable ADME profile with predicted good oral bioavailability.


Asunto(s)
Hidrazonas/química , Inhibidores de la Monoaminooxidasa/síntesis química , Administración Oral , Animales , Sitios de Unión , Dominio Catalítico , Semivida , Humanos , Hidrazonas/metabolismo , Hidrazonas/farmacocinética , Concentración 50 Inhibidora , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacocinética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...