Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 887233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754464

RESUMEN

Ulcerative colitis (UC), an inflammatory bowel disease, is a chronic condition of a multifaceted pathophysiology. The incidence of UC is increasing internationally. The current therapies for UC lack relative effectiveness and are associated with adverse effects. Therefore, novel therapeutic options should be developed. It has been well documented that modulating the Nrf2/NFκB is a promising therapeutic target in inflammation. Carbocisteine is a mucoregulatory medication and its efficacy in COPD was found to be more closely related to its antioxidant and anti-inflammatory properties. Carbocisteine has not yet been examined for the management of UC. Hence, our approach was to investigate the potential coloprotective role of carbocisteine in acetic acid-induced colitis in rats. Our results revealed that carbocisteine improved colon histology and macroscopic features and subdued the disease activity as well. Additionally, carbocisteine attenuated colon shortening and augmented colon antioxidant defense mechanisms via upregulating catalase and HO-1 enzymes. The myeloperoxidase activity was suppressed indicating inhibition of the neutrophil infiltration and activation. Consistent with these findings, carbocisteine boosted Nrf2 expression along with NFκB inactivation. Consequently, carbocisteine downregulated the proinflammatory cytokines IL-6 and TNF-α and upregulated the anti-inflammatory cytokine IL-10. Concomitant to these protective roles, carbocisteine displayed anti-apoptotic properties as revealed by the reduction in the Bax: BCL-2 ratio. In conclusion, carbocisteine inhibited oxidative stress, inflammatory response, and apoptosis in acetic acid-induced UC by modulating the Nrf2/HO-1 and NFκB interplay in rats. Therefore, the current study provides a potential basis for repurposing a safe and a commonly used mucoregulator for the treatment of UC.

2.
Environ Sci Pollut Res Int ; 29(22): 32368-32382, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35147886

RESUMEN

The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Neuronas Dopaminérgicas/patología , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Lisosomas , Mutación
3.
Saudi J Biol Sci ; 29(1): 402-410, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35002435

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease which is marked by leukocytes infiltration inside synovial tissue, joints and also inside synovial fluid which causes progressive destruction of joint cartilage. There are numerous genetical and lifestyle factors, responsible for rheumatoid arthritis. One such factor can be cysteine cathepsins, which act as proteolytic enzymes. These proteolytic enzyme gets activated at acidic pH and are found in lysosomes and are also termed as cysteine proteases. These proteases belong to papain family and have their elucidated role in musculoskeletal disorders. Numerous cathepsins have their targeted role in rheumatoid arthritis. These proteases are secreted through various cell types which includes matrix metalloproteases and papain like cysteine proteases. These proteases can potentially lead to bone and cartilage destruction which causes an immune response in case of inflammatory arthritis.

4.
Life Sci ; 284: 119899, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450170

RESUMEN

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases with motor disturbances, cognitive decline, and behavioral impairment. It is characterized by the extracellular aggregation of amyloid-ß plaques and the intracellular accumulation of tau protein. AD patients show a cognitive decline, which has been associated with oxidative stress, as well as mitochondrial dysfunction. Alpha-lipoic acid (α-LA), a natural antioxidant present in food and used as a dietary supplement, has been considered a promising agent for the prevention or treatment of neurodegenerative disorders. Despite multiple preclinical studies indicating beneficial effects of α-LA in memory functioning, and pointing to its neuroprotective effects, to date only a few studies have examined its effects in humans. Studies performed in animal models of memory loss associated with aging and AD have shown that α-LA improves memory in a variety of behavioral paradigms. Furthermore, molecular mechanisms underlying α-LA effects have also been investigated. Accordingly, α-LA shows antioxidant, antiapoptotic, anti-inflammatory, glioprotective, metal chelating properties in both in vivo and in vitro studies. In addition, it has been shown that α-LA reverses age-associated loss of neurotransmitters and their receptors. The review article aimed at summarizing and discussing the main studies investigating the neuroprotective effects of α-LA on cognition as well as its molecular effects, to improve the understanding of the therapeutic potential of α-LA in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with α-LA.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ácido Tióctico/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Glutatión/metabolismo , Humanos , Oxidación-Reducción/efectos de los fármacos , Ácido Tióctico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...