Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 337: 139226, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379972

RESUMEN

In the leather industry, tannery sludge is produced in large volume. This study investigated the thermal degradation behavior of tannery sludge using thermogravimetric analysis (TGA). The experiments were carried out in an inert atmosphere using nitrogen gas at varied heating rates of 5, 10, 20, and 40 °C/min in the temperature range of 30-900 °C. For the kinetic parameters calculation, three different models, Friedman, Kissinger-Akahira-Sunose (KAS) and the Ozawa-Flynn-Wall (OFW), were employed. The average activation energy (Ea) obtained from Friedman, KAS, and the OFW methods were 130.9 kJ mol-1, 143.14 kJ mol-1, and 147.19 kJ mol-1 respectively. Along with that, experiment of pyrolysis was accomplished in fixed bed reactor (FBR) at temperature of 400 °C. Biochar produced from FBR had a yield of about 71%. The analysis of gas chromatography-mass spectroscopy shows the different chemical compounds present in the bio-oil containing hydrocarbons (alkanes and alkenes), oxygen containing compounds (alcohols, aldehyde, ketones, esters carboxylic acids and the esters) and the nitrogen containing compounds. The kinetic assessment was complemented by distributed activation energy model (DAEM). In the pyrolysis of tannery sludge six pseudo-components were found to be involved. Furthermore, artificial neural network (ANN) was used to predict the activation energy from conversion, temperature, and the heating rate data. MLP-3-11-1 (Multilayer Perceptrons) described well the conversion behavior of tannery sludge pyrolysis.


Asunto(s)
Pirólisis , Aguas del Alcantarillado , Termogravimetría , Cinética , Redes Neurales de la Computación , Nitrógeno , Biomasa
2.
N Biotechnol ; 75: 40-51, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-36948413

RESUMEN

The massive production and extensive use of fossil-based non-biodegradable plastics are leading to their environmental accumulation and ultimately cause health threats to animals, humans, and the biosphere in general. The problem can be overcome by developing eco-friendly ways for producing plastics-like biopolymers from waste residues such as of agricultural origin. This will solve two currently prevailing social issues: waste management and the efficient production of a biopolymer that is environmentally benign, polyhydroxyalkanoates (PHA). The current study assesses the environmental impact of biopolymer (PHA) manufacturing, starting from slaughterhouse waste as raw material. The Material Input Per Service Unit methodology (MIPS) is used to examine the sustainability of the PHA production process. In addition, the impact of shifting from business-as-usual energy provision (i.e., electricity from distribution grid network and heat provision from natural gas) to alternative renewable energy sources is also evaluated. As a major outcome, it is shown that the abiotic material contribution for PHA production process is almost double for using hard coal as an energy source than the petro-plastic low-density-poly(ethene) (LPDE), which PHA shall ultimately replace. Likewise, abiotic material contribution is 43 % and 7 % higher when using the electricity from the European electricity mix (EU-27 mix) and biogas, respectively, than in the case of LDPE production. However, PHA production based on wind power for energy provision has 12 % lower abiotic material input than LDPE. Furthermore, the water input decreases when moving from the EU-27 mix to wind power. The reduction in water consumption for various electricity provision resources amounts to 20 % for the EU-27 mix, 25 % for hard coal, 71 % for wind, and 70 % for biogas. As the main conclusion, it is demonstrated that using wind farm electricity to generate PHA is the most environmentally friendly choice. Biogas is the second-best choice, although it requires additional abiotic material input.


Asunto(s)
Polihidroxialcanoatos , Humanos , Animales , Biocombustibles , Polietileno , Biopolímeros , Carbón Mineral
3.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986999

RESUMEN

Recently, nanomaterials have received considerable attention in the agricultural sector, due to their distinctive characteristics such as small size, high surface area to volume ratio, and charged surface. These properties allow nanomaterials to be utilized as nanofertilizers, that can improve crop nutrient management and reduce environmental nutrient losses. However, after soil application, metallic nanoparticles have been shown to be toxic to soil biota and their associated ecosystem services. The organic nature of nanobiochar (nanoB) may help to overcome this toxicity while maintaining all the beneficial effects of nanomaterials. We aimed to synthesize nanoB from goat manure and utilize it with CuO nanoparticles (nanoCu) to influence soil microbes, nutrient content, and wheat productivity. An X-ray diffractogram (XRD) confirmed nanoB synthesis (crystal size = 20 nm). The XRD spectrum showed a distinct carbon peak at 2θ = 42.9°. Fourier-transform spectroscopy of nanoB's surface indicated the presence of C=O, C≡N-R, and C=C bonds, and other functional groups. The electron microscopic micrographs of nanoB showed cubical, pentagonal, needle, and spherical shapes. NanoB and nanoCu were applied alone and as a mixture at the rate of 1000 mg kg-1 soil, to pots where wheat crop was grown. NanoCu did not influence any soil or plant parameters except soil Cu content and plant Cu uptake. The soil and wheat Cu content in the nanoCu treatment were 146 and 91% higher, respectively, than in the control. NanoB increased microbial biomass N, mineral N, and plant available P by 57, 28, and 64%, respectively, compared to the control. The mixture of nanoB and nanoCu further increased these parameters, by 61, 18, and 38%, compared to nanoB or nanoCu alone. Consequently, wheat biological, grain yields, and N uptake were 35, 62 and 80% higher in the nanoB+nanoCu treatment compared to the control. NanoB further increased wheat Cu uptake by 37% in the nanoB+nanoCu treatment compared to the nanoCu alone. Hence, nanoB alone, or in a mixture with nanoCu, enhanced soil microbial activity, nutrient content, and wheat production. NanoB also increased wheat Cu uptake when mixed with nanoCu, a micronutrient essential for seed and chlorophyll production. Therefore, a mixture of nanobiochar and nanoCu would be recommended to farmers for improving their clayey loam soil quality and increasing Cu uptake and crop productivity in such agroecosystems.

4.
Chem Commun (Camb) ; 55(32): 4699-4702, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30942215

RESUMEN

Ultrafine sub-3 nm Rh nanoclusters confined within a metal-organic framework (UIO-66) were constructed through a double-solvent host-guest strategy and achieved superior hydrogen generation via ammonia borane hydrolysis compared with Rh nanoclusters dispersed on the exterior walls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...