Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virology ; 374(1): 151-63, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18234270

RESUMEN

Phase I human clinical studies involving therapeutics for emerging and biodefense pathogens with low incidence, such as the severe acute respiratory syndrome coronavirus (SARS-CoV), requires at a minimum preclinical evaluation of efficacy in two well-characterized and robust animal models. Thus, a ferret SARS-CoV model was evaluated over a period of 58 days following extensive optimization and characterization of the model in order to validate clinical, histopathological, virological and immunological endpoints. Ferrets that were infected intranasally with 10(3) TCID50 SARS-CoV showed higher body temperature (2-6 d.p.i.), sneezing (5-10 d.p.i.), lesions (5-7 d.p.i.) and decreased WBC/lymphocytes (2-5 d.p.i.). SARS-CoV was detected up to 7 d.p.i. in various tissues and excreta, while neutralizing antibody titers rose at 7 d.p.i. and peaked at 14 d.p.i. At 29 d.p.i., one group was challenged with 10(3) TCID50 SARS-CoV, and an anamnestic response in neutralizing antibodies was evident with no detectable virus. This study supports the validity of the ferret model for use in evaluating efficacy of potential therapeutics to treat SARS.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Animales , Anticuerpos Antivirales/sangre , Temperatura Corporal , Hurones , Recuento de Leucocitos , Pulmón/patología , Pulmón/virología , Recuento de Linfocitos , Masculino , Cavidad Nasal/virología , Pruebas de Neutralización , Faringe/virología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/fisiopatología
2.
J Virol ; 81(16): 8634-47, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17537852

RESUMEN

In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.


Asunto(s)
Proteínas de la Cápside/metabolismo , Dineínas/metabolismo , Retículo Endoplásmico/virología , Aparato de Golgi/virología , Virus Hantaan/crecimiento & desarrollo , Proteínas del Núcleo Viral/metabolismo , Animales , Proteínas de la Cápside/análisis , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Citocalasina D/farmacología , Complejo Dinactina , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Nocodazol/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Transporte de Proteínas/efectos de los fármacos , Conejos , Células Vero , Vimentina/metabolismo , Proteínas del Núcleo Viral/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...