Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837212

RESUMEN

Over the last four decades, numerous studies have been conducted on the use of bonded composite repairs for aircraft structures. These studies have explored the repair of damaged plates through experimental, numerical, and analytical methods and have found that bonded composite repairs are effective in controlling crack damage propagation in thin plates. The use of double-sided composite repairs has been found to improve repair performance within certain limits. This study focuses on these limits and optimizes double-sided composite repairs by varying adhesive bond and composite patch parameters. The optimization process begins with a finite element analysis to determine the stress intensity factor (SIF) for various variables and levels, followed by the application of the Taguchi method to find the optimal combination of parameters for maximizing the normalized SIF. In conclusion, we successfully determined the stress intensity factor (SIF) for various variations and normalized it for optimization. An optimization study was then performed using the Taguchi design and the results were analyzed. Our findings demonstrate the repair performance of bonded composite patches using a cost-effective and energy-efficient approach.

2.
Materials (Basel) ; 15(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35591420

RESUMEN

In aerospace engineering applications, lightweight material structures are considered to perform difficult service conditions and afford energy efficiency. Therefore, composite materials have gained popularity due to their light weights and high performances in structural design. Mechanical loads and environmental conditions primarily create damage to structural materials, thus numerous studies have considered the repair of the damaged structure. Bonded composite repairs are generally chosen, as they provide enhanced stress-transfer mechanisms and joint efficiencies with the increased use of advanced composite materials in primary and secondary aircraft structural components. Thus, it is essential to have reliable and repeatable bonded repair procedures to restore damaged structural components. However, composite bonded repairs, especially with primary structures, present several scientific challenges in the current existing repair technologies. In this review, a study has been done on the bonded composite repair of damaged structures with the stress-intensity factor (SIF) as the parameter for defining the extent of failure by composite repair and unrepaired material structures. In this work, various types of repair methods and the techniques used by researchers are critically reviewed, and future opportunities are explored. The present study was limited to the composite and aluminium materials that are common in aerospace applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...