Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Hazard Mater ; 457: 131752, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290353

RESUMEN

Microorganisms in the rhizosphere are crucial allies for plant stress tolerance. Recent research suggests that by interacting with the rhizosphere microbiome, microorganisms can aid in the revegetation of soils contaminated with heavy metal(loid)s (HMs). However, it is unknown that how Piriformospora indica influences the rhizosphere microbiome to mitigate arsenic-toxicity in arsenic-enriched environments. Artemisia annua plants were grown in the presence or absence of P. indica and spiked with low (50) and high (150 µmol/L) concentrations of arsenic (As). After inoculation with P. indica, fresh weight increased by 37.7% and 10% in control and high concentration treated plants, respectively. Transmission electron microscopy showed that cellular organelles were severely damaged by As and even disappeared under high concentration. Furthermore, As was mostly accumulated by 5.9 and 18.1 mg/kg dry weight in the roots of inoculated plants treated with low and high concentrations of As, respectively. Additionally, 16 S and ITS rRNA gene sequencing were applied to analyze the rhizosphere microbial community structure of A. annua under different treatments. A significant difference was observed in microbial community structure under different treatments as revealed by non-metric multidimensional scaling ordination. The bacterial and fungal richness and diversity in the rhizosphere of inoculated plants were actively balanced and regulated by P. indica co-cultivation. Lysobacter and Steroidobacter were found to be the As-resistant bacterial genera. We conclude that P. indica inoculation could alter rhizosphere microecology, thereby mitigating As-toxicity without harming the environment.


Asunto(s)
Arsénico , Artemisia annua , Microbiota , Arsénico/toxicidad , Artemisia annua/genética , Artemisia annua/microbiología , Raíces de Plantas/microbiología , Bacterias , Rizosfera , Microbiología del Suelo
2.
Sci Total Environ ; 807(Pt 3): 151016, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34666083

RESUMEN

Ectomycorrhizal fungi (EMF) are mutualists that play crucial roles in liberation, nutrient acquisition, transfer of growth-limiting resources and provision of water to host plants in terrestrial ecosystems, particularly in stressed prone climates. In this study, a field-based experiment was performed in Yunnan, China to assess the effect of karst rocky desertification (KRD) and natural forests (non-KRD) sites on the richness and composition of EMF communities. Inert sand-filled mesh bags were employed to characterize the active EMF and quantify the production of extramatrical mycelium (EMM). Results indicated that, EMF exhibited a significant differentiation among KRD and non-KRD sites, richness and diversity were higher across KRD areas, whereas the evenness showed the opposite trend. Ascomycota and Zygomycota were greater across KRD sites, however, Basidiomycota showed no difference across both study sites. The relative abundance of Clavaria, Butyriboletus, Odontia, Phyloporus, Helvella, Russula and Tomentella were higher across the KRD sites, whereas, Clavulinopsis, Endogone, Amanita, Inocybe and Clavulina were higher across the non-KRD sites. It's worth noting that, saprophytic (SAP) fungal community was found to be more abundant in the soil than the mesh bags at both sites particularly at KRD sites, which likely provide more free space and less competition for the EMF to thrive well in the mesh bags. In similar pattern, ergosterol concentration in mesh bags was observed relatively higher at KRD sites than the non-KRD sites. The Entoloma, Amanita, and Sebacina were found to be substantially higher in mesh bags than soil across both sites. Delicatula, Helvella and Tomentella on the other hand, showed higher relative abundance in mesh bags than soil over KRD sites, however they did not differ across non-KRD sites. Taken together, the presented results highlight relationship between the EMF community and the complex KRD environment, which is very important for the restoration of disturbed karst landscapes.


Asunto(s)
Micobioma , Micorrizas , China , Conservación de los Recursos Naturales , Ecosistema , Micelio , Suelo
3.
Sci Total Environ ; 793: 148502, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34166904

RESUMEN

Phosphorus (P) is a critical macronutrient that is essential for many life-sustaining processes. Despite decades of work on plant performance under P deficiency and the importance of microbes in ecosystem processes, little is known about how bacterial and fungal flora respond to P gradients and determine the vegetation health. In current study, we examined soil edaphic conditions and microbial communities in 39 untouched natural forests representing phosphorous deficient (Pp) and phosphorus rich (Pr) soils (due to naturally occurring phosphate rocks) in Yunnan Province, China. We also considered the effect of plant functional types by including the dominant tree species. Bacterial and fungal diversity was greater across the Pp sites compared with Pr sites. The relative abundance of Actinobacteria and Gemmatimonadetes was higher across Pp sites, while Chlamydiae and Verrucomicrobia showed the opposite pattern, with greater relative abundance across the Pr sites. Bacterial taxa that were observed in low P soils were more likely having oligotrophic life history strategies. Interestingly, ectomycorrhizal (ECM) fungal diversity was promoted in the Pp sites, indicating that the decreasing soil P concentration and the increasing host P demand foster stimulated the ECM species for hyphal soil exploration. Moreover, the high P level caused saprophytic fungi (SAP) to diverge, causing its enrichment only under Q. variabilis compared to low P soil, where there is no difference in relative abundance of SAP between the two tree species. This likely resulted in an enhanced decomposition process by SAP and elevation of soil properties (Carbon and Nitrogen) under Q. variabilis across the Pr sites. Taken together, our findings highlight the highly diverse microbiome in low P soils. The higher soil P caused shifts of fungal functional guilds, which likely influence tree growth and health (ECM), along with divergence of ecosystem services between tree functional types.


Asunto(s)
Microbiota , Micorrizas , China , Hongos , Fósforo , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...