Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27405, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38562510

RESUMEN

Over the past few years, the use of DC-DC buck-boost converters for Photovoltaic (PV) in renewable energy applications has increased for better results. One of the main issues with this type of converter is that output voltage is achieved with the undesired ripples. Many models are available in the literature to address this issue, but very limited work is available that achieves the desired goal using deep learning-based models. Whenever it comes to the PV, then it is further limited. Here, a deep learning-based model is proposed to reduce the steady-state time and achieve the desired buck- or boost mode for PV modules. The deep learning-based model is trained using data collected from the conventional PID controller. The output voltage of the experimental setup is 12V while the input voltage from the PV modules is 10V (when the sunlight decreases) to 24V (for 3.6 kVA) to 48V (for more than 5 kVA). It is among the few models using a single big battery (12V) for off-grid and on-grid for a single building. Experimental results are validated using objective measures. The proposed model outperforms the conventional PID controller-based buck-boost converters. The results clearly show improved performance in terms of steady-state and less overshoot.

2.
Heliyon ; 10(6): e28057, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545133

RESUMEN

Cardiovascular diseases, particularly coronary artery disease, pose big challenges to human life. Deployment of the stent is a preferable treatment for the above-mentioned disease. However, stents are usually made up of shape memory alloy called Nitinol. The poorer surface finish on the machined nitinol stents accelerates the migration of Nickel ions from the implanted nitinol stent, which is considered toxic and can lead to stenosis. The current study deals with controlling surface quality by minimising surface roughness and improving corrosion resistance. Femtosecond laser (fs-laser 10-15 s) micromachining was employed to machine the Nitinol surface to achieve sub-micron surface roughness. The Grey relational analysis (GRA)-coupled design of the experimental technique was implemented to determine optimal levels of four micromachining parameters (laser power, pulse frequency, scanning speed, and scanning pattern) varied at three levels to achieve minimum surface roughness and to maximise the volume ablation. The results show that to yield minimum surface roughness and maximum volume ablation, laser power and scanning speed are in a higher range. In contrast, the pulse frequency is lower, and the scanning pattern is in a zig-zag manner. ANOVA results manifest that scanning speed is the predominant factor in minimising surface roughness, followed by pulse frequency. Furthermore, the corrosion behaviour of the machined nitinol specimens was evaluated, and the results show that specimens with lower surface roughness had lower corrosion rates.

3.
Heliyon ; 9(2): e13687, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873152

RESUMEN

Perovskite materials play a vital role in the field of material science via experimental as well as theoretical calculations. Radium semiconductor materials are considered the backbone of medical fields. These materials are considered in high technological fields to be used as controlling the decay ability. In this study, radium-based cubic fluoro-perovskite XRaF3 (where X = Rb and Na) are calculated using a DFT (density functional theory). These compounds are cubic nature with 221 space groups that construct on CASTEP (Cambridge-serial-total-energy-package) software with ultra-soft PPPW (pseudo-potential plane-wave) and GGA (Generalized-Gradient-approximation)-PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional. The structural, optical, electronic, and mechanical properties of the compounds are calculated. According to the structural properties, NaRaF3 and RbRaF3 have a direct bandgap with 3.10eV and 4.187eV of NaRaF3 and RbRaF3, respectively. Total density of states (DOS) and partial density of states (PDOS) provide confirmation to the degree of electrons localized in distinct bands. NaRaF3 material is semiconductors and RbRaF3 is insulator, according to electronic results. The imaginary element dispersion of the dielectric function reveals its wide variety of energy transparency. In both compounds, the optical transitions are examined by fitting the damping ratio for the notional dielectric function scaling to the appropriate peaks. The absorption and the conductivity of NaRaF3 compound is better than the RbRaF3 compound which make it suitable for the solar cell applications increasing the efficiency and work function. We observed that both compounds are mechanically stable with cubic structure. The criteria for the mechanical stability of compounds are also met by the estimated elastic results. These compounds have potential application in field of solar cell and medical. Objectives: The band gap, absorption and the conductivity are necessary conditions for potential applications. Here, literature was reviewed to check computational translational insight into the relationships between absorption and conductivity for solar cell and medical applications of novel RbRaF3 and NaRaF3 compounds.

4.
Heliyon ; 9(3): e14215, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36915507

RESUMEN

One of the challenges for Mobile Network Operators (MNO) in 5G deployment is to ensure reliability in the various sections of the network as the new services and applications, for instance, video on demand, telemedicine, online learning, smart transportation and augmented reality require not only high bandwidth but also demand uninterrupted service. However, this reliability requires substantial investment. Therefore, MNO only deploys protection or backup resources in the network unless it is cost-effective. The study aims to present a reliable and low-cost protection scheme based on an Ultra-Dense Wavelength Division Multiplexing Passive Optical Network (UDWDM PON) for the transport layer of the 5G network, i.e., for the fronthaul/backhaul section. We have evaluated the Capital Expenditure (CAPEX) cost of UDWDM PON with and without protection in a dense urban area. We also measure the figure of merit between the cost and reliability of the system and, subsequently, confirm that the proposed protection scheme can achieve system reliability up to four nines with very low additional CAPEX investment. Finally, the efficacy of the proposed protection scheme is also demonstrated through simulation experiments.

5.
Discov Nano ; 18(1): 15, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795251

RESUMEN

Perovskites are the key enabler materials for the solar cell applications in the achievement of high performance and low production costs. In this article, the structural, mechanical, electronic, and optical properties of rubidium-based cubic nature perovskite LiHfO3 and LiZnO3 are investigated. These properties are investigated using density-functional theory with the aid of CASTEP software by introducing ultrasoft pseudo-potential plane-wave (USPPPW) and GG-approximation-PB-Ernzerhof exchange-correlation functionals. It is investigated that the proposed compounds exhibit stable cubic phase and meet the criteria of mechanical stability by the estimated elastic properties. Also, according to Pugh's criterion, it is noted that LiHfO3 is ductile and LiZnO3 is brittle. Furthermore, the electronic band structure investigation of LiHfO3 and LiZnO3 shows that they have indirect bandgap (BG). Moreover, the BG analysis of the proposed materials shows that these are easily accessible. Also, the results for partial density of states (DOS) and total DOS confirm the degree of a localized electron in the distinct band. In addition, the optical transitions in the compounds are examined by fitting the damping ratio for the notional dielectric functions scaling to the appropriate peaks. At absolute zero temperature, the materials are observed as semiconductors. Therefore, it is evident from the analysis that the proposed compounds are excellent candidates for solar cells and protective rays applications.

6.
Polymers (Basel) ; 14(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566972

RESUMEN

Hardness is a useful measure of a material's resistance to permanent indentation; but for viscoelastic polymers, hardness data are highly dependent on the test type and the parameter set chosen. Vickers microhardness testing is used to leave small indents (<150 µm) and is shown to be applicable to polymers. A detailed investigation of the required steps for microhardness testing in isotactic polypropylene (iPP) is provided. Samples should be mounted in epoxy resin in order to maintain curing temperatures at room temperature. Mounted samples can be ground and polished in a semi-automatic polisher using graduated SiC paper (wet grinding) but progressing onto alumina suspension for polishing. Final polishing should be performed with 0.05-µm alumina suspension. The hardness measured was shown to be dependent on load and dwell time with a much greater dependency on dwell time. Strain recovery was shown to be completed after a time period equal to the dwell time. This study shows that indents can be measured thereafter, and it is recommended that they be measured within a 24 h period after the indent was created. After data fitting, the equation for hardness was shown to follow a power law with load and dwell time as the main variables. Fitting parameters were compared to those found in the literature, and it was found that parameters were significantly different to those reported elsewhere. Therefore, this study highlights the importance of calibrating on a case-by-case basis. Finally, to show the usefulness of the Vickers micro-hardness testing method, the calibrated test method was applied on iPP with additions of carbon black up to 3 wt.%. Comparisons were made with data from the literature, but the hardness data generated in our work were found to be at least twice that reported in the literature. The testing parameters were not cited in the literature: specifically, the dwell time was not provided, and this generated doubt on the usefulness of the cited data. Hence, this work is intended to serve as an exemplar of how to prepare and proceed with hardness testing of polymers.

7.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 136-142, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200983

RESUMEN

The inherent bandwidth limitations make it quite challenging to achieve the wideband response of metamaterial absorbers. In this paper, a metamaterial absorber based on triangular metallic rings has been proposed to attain wideband absorption (>90%) in the wavelength span of 400-750 nm. The absorber is constituted of periodically placed unit cells, where each unit cell contains three concentric triangular chromium metal rings. The absorption of the design remains stable (above 70%) over a wide range of incidence obliquity (0°-60°) under transverse electric (TE) and transverse magnetic (TM) polarization. Further, the absorber shows polarization-insensitive behavior over different polarization states. The low-cost and thermally endurable chromium metal, wide absorption, and wide-angle stability make the proposed absorber a suitable candidate for applications like solar energy harvesting, solar detectors, solar thermal photovoltaics, and photonic devices.

8.
Appl Opt ; 60(29): 9160-9166, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34623998

RESUMEN

Terahertz (THz) metamaterial absorbers have realized a prodigious reputation due to the limitation of natural absorbing materials in this range. Getting wideband absorption characteristics is challenging and arduous, especially in the THz band. Self-similar repeated fractal elements offer a promising solution to attain broadband absorption response due to their inherent multiple resonance characteristics. Therefore, by captivating the advantage of fractal geometry, we proposed a dual and wideband meta-absorber operating in the THz regime. The metamaterial absorber design comprises the assembly of self-similar square-shaped blocks arranged in a specific pattern to construct the fractal geometry. The proposed THz absorber demonstrates 90% absorption under normal incident waves for two operating bands from 9.5-10.55 THz and 12.3-13.35 THz. The suggested metamaterial absorber also shows good and stable absorption responses under different oblique incidence angles for transverse electric (TE) and transverse magnetic (TM) wave polarization. Moreover, this absorber manifests over 85% absorptivity in its entire operating range (9-14 THz) under the incidence angle of 60° and 70° for TM mode. Furthermore, it gives a polarization-insensitive behavior under the effect of different polarization angles. This kind of wideband absorber catches fascinating applications in THz detection, imaging, cloaking, and optoelectronic devices.

9.
Polymers (Basel) ; 13(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668125

RESUMEN

The present review provides an overview of the current status and future perspectives of one of the smart manufacturing techniques of Industry 4.0, laser transmission welding (LTW) of semi-crystalline (SC) polymers and their composites. It is one of the most versatile techniques used to join polymeric components with varying thickness and configuration using a laser source. This article focuses on various parameters and phenomena such as inter-diffusion and microstructural changes that occur due to the laser interaction with SC polymers (specifically polypropylene). The effect of carbon black (size, shape, structure, thermal conductivity, dispersion, distribution, etc.) in the laser absorptive part and nucleating agent in the laser transmissive part and its processing conditions impacting the weld strength is discussed in detail. Among the laser parameters, laser power, scanning speed and clamping pressure are considered to be the most critical. This review also highlights innovative ideas such as incorporating metal as an absorber in the laser absorptive part, hybrid carbon black, dual clamping device, and an increasing number of scans and patterns. Finally, there is presented an overview of the essential characterisation techniques that help to determine the weld quality. This review demonstrates that LTW has excellent potential in polymer joining applications and the challenges including the cost-effectiveness, innovative ideas to provide state-of-the-art design and fabrication of complex products in a wide range of applications. This work will be of keen interest to other researchers and practitioners who are involved in the welding of polymers.

10.
RSC Adv ; 10(51): 30282-30288, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516067

RESUMEN

Traditionally, symmetric accelerating beam (SAB) generation requires bulky optical components, which hinder the miniaturization of optical systems. Recently, metasurfaces, which are composed of sub-wavelength features, have provided a captivating boulevard for the realization of ultra-thin and flat optical devices. Therefore, for the first time, we design and simulate all-dielectric metasurfaces based on an optical caustic approach to generate highly efficient SABs by tailoring the phase of an incident wave. The designed metasurface utilizes spatial distribution of optimized Nb2O5 nano-rods on SiO2 substrate to perform the phase modulation. In contrast with conventional accelerating beams, the generated SABs can follow any predefined propagation trajectory with unique features, such as symmetric intensity profile, autofocusing, and thin needle-like structure in their intensity profile. In addition to this, these beams have also shown the ability to avoid obstacles, placed in the direction of propagation of main lobes. We believe that these beams can be useful in applications, including Raman spectroscopy and fluorescent imaging, and multiparticle manipulation.

11.
Sensors (Basel) ; 14(4): 7451-88, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24763250

RESUMEN

Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...