Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 367, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148099

RESUMEN

BACKGROUND: Recurrent dehydration causes chronic kidney disease in humans and animal models. The dromedary camel kidney has remarkable capacity to preserve water and solute during long-term dehydration. In this study, we investigated the effects of dehydration and subsequent rehydration in the camel's kidney histology/ultrastructure and changes in aquaporin/solute carrier proteins along with gene expression. RESULTS: In light microscopy, dehydration induced few degenerative and necrotic changes in cells of the cortical tubules with unapparent or little effect on medullary cells. The ultrastructural changes encountered in the cortex were infrequent during dehydration and included nuclear chromatin condensation, cytoplasmic vacuolization, mitochondrial swelling, endoplasmic reticulum/ lysosomal degeneration and sometimes cell death. Some mRNA gene expressions involved in cell stability were upregulated by dehydration. Lesions in endothelial capillaries, glomerular membranes and podocyte tertiary processes in dehydrated camels indicated disruption of glomerular filtration barrier which were mostly corrected by rehydration. The changes in proximal tubules brush borders after dehydration, were accompanied by down regulation of ATP1A1 mRNA involved in Na + /K + pump that were corrected by rehydration. The increased serum Na, osmolality and vasopressin were paralleled by modulation in expression level for corresponding SLC genes with net Na retention in cortex which were corrected by rehydration. Medullary collecting ducts and interstitial connective tissue were mostly unaffected during dehydration. CKD, a chronic nephropathy induced by recurrent dehydration in human and animal models and characterized by interstitial fibrosis and glomerular sclerosis, were not observed in the dehydrated/rehydrated camel kidneys. The initiating factors, endogenous fructose, AVP/AVPR2 and uric acid levels were not much affected. TGF-ß1 protein and TGF-ß1gene expression showed no changes by dehydration in cortex/medulla to mediate fibrosis. KCNN4 gene expression level was hardly detected in the dehydrated camel's kidney; to encode for Ca + + -gated KCa3.1 channel for Ca + + influx to instigate TGF-ß1. Modulation of AQP 1, 2, 3, 4, 9 and SLC protein and/or mRNAs expression levels during dehydration/rehydration was reported. CONCLUSIONS: Long-term dehydration induces reversible or irreversible ultrastructural changes in kidney cortex with minor effects in medulla. Modulation of AQP channels, SLC and their mRNAs expression levels during dehydration/rehydration have a role in water conservation. Cortex and medulla respond differently to dehydration/rehydration.


Asunto(s)
Acuaporinas , Camelus , Deshidratación , Riñón , Animales , Deshidratación/veterinaria , Acuaporinas/metabolismo , Acuaporinas/genética , Riñón/patología , Riñón/metabolismo , Masculino , Fluidoterapia/veterinaria , Regulación de la Expresión Génica , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
2.
Front Vet Sci ; 10: 1236425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116506

RESUMEN

Introduction: Dromedary camels robustly withstand dehydration, and the rough desert environment but the adaptation mechanisms are not well understood. One of these mechanisms is that the dromedary camel increases its body temperature to reduce the process of evaporative cooling during the hot weather. Stress in general, has deleterious effects in the body. In this study, we sought to determine the effects of dehydration and rehydration on stress parameters in the dromedary camels and how it pacifies these effects. Methods: Nineteen male camels were randomly divided into control, dehydrated and rehydrated groups, and fed alfalfa hay ad-libitum. The dehydrated and rehydrated groups were water-restricted for 20 days after which the rehydrated camels were provided with water for 72 h. The control and dehydrated camels were slaughtered at day 20 from the start of experiment whereas the rehydrated group was killed 72 h later. Many biochemical, hematological histopathological parameters and gene analysis were performed in relevant tissues collected including blood, plasma, and tissues. Results and discussion: It was observed that severely dehydrated camels lost body weight, passed very hard feces, few drops of concentrated urine, and were slightly stressed as reflected behaviorally by loss of appetite. Physiologically, the stress of dehydration elicited modulation of plasma stress hormones for water preservation and energy supply. Our results showed significant increase in cortisol, norepinephrine and dopamine, and significant decrease in epinephrine and serotonin. The significant increase in malondialdehyde was accompanied with significant increase in antioxidants (glutathione, retinol, thiamin, tocopherol) to provide tissue protection from oxidative stress. The physiological blood changes observed during dehydration serve different purposes and were quickly restored to normality by rehydration. The dehydrated/rehydrated camels showed reduced hump size and serous atrophy of perirenal and epicardial fat. The latter changes were accompanied by significantly increased expression of genes encoding proteins for energy production (ANGPTL4, ACSBG1) from fat and significantly decreased expression of genes (THRSP; FADS 1&2) encoding proteins enhancing energy expenditure. This process is vital for camel survival in the desert. Dehydration induced no major effects in the vital organs. Only minor degenerative changes were observed in hepatic and renal cells, physiological cardiomyocyte hypertrophy in heart and follicular hyperplasia in splenic but lipidosis was not depicted in liver hepatocytes. Ketone bodies were not smelled in urine, sweat and breathing of dehydrated animals supporting the previous finding that the ß hydroxybutyrate dehydrogenase, a key enzyme in ketone body formation, is low in the camel liver and rumen. Rehydration restored most of blood and tissues to normal or near normal. In conclusion, camels are adapted to combat dehydration stress and anorexia by increasing anti-stressors and modulating genes involved in fat metabolism.

3.
BMC Vet Res ; 16(1): 458, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228660

RESUMEN

BACKGROUND: Dehydration has deleterious effects in many species, but camels tolerate long periods of water deprivation without serious health compromise. The kidney plays crucial role in water conservation, however, some reports point to elevated kidney function tests in dehydrated camels. In this work, we investigated the effects of dehydration and rehydration on kidney cortex and medulla with respect to pro-inflammatory markers, oxidative stress and apoptosis along with corresponding gene expression. RESULTS: The cytokines IL-1ß and IL-18 levels were significantly elevated in the kidney cortex of dehydrated camel, possibly expressed by tubular epithelium, podocytes and/or mesangial cells. Elevation of IL-18 persisted after rehydration. Dehydration induced oxidative stress in kidney cortex evident by significant increases in MDA and GSH, but significant decreases in SOD and CAT. In the medulla, CAT decreased significantly, but MDA, GSH and SOD levels were not affected. Rehydration abolished the oxidative stress. In parallel with the increased levels of MDA, we observed increased levels of PTGS1 mRNA, in MDA synthesis pathway. GCLC mRNA expression level, involved in GSH synthesis, was upregulated in kidney cortex by rehydration. However, both SOD1 and SOD3 mRNA levels dropped, in parallel with SOD activity, in the cortex by dehydration. There were significant increases in caspases 3 and 9, p53 and PARP1, indicating apoptosis was triggered by intrinsic pathway. Expression of BCL2l1 mRNA levels, encoding for BCL-xL, was down regulated by dehydration in cortex. CASP3 expression level increased significantly in medulla by dehydration and continued after rehydration whereas TP53 expression increased in cortex by rehydration. Changes in caspase 8 and TNF-α were negligible to instigate extrinsic apoptotic trail. Generally, apoptotic markers were extremely variable after rehydration indicating that animals did not fully recover within three days. CONCLUSIONS: Dehydration causes oxidative stress in kidney cortex and apoptosis in cortex and medulla. Kidney cortex and medulla were not homogeneous in all parameters investigated indicating different response to dehydration/rehydration. Some changes in tested parameters directly correlate with alteration in steady-state mRNA levels.


Asunto(s)
Camelus/fisiología , Deshidratación/veterinaria , Riñón/fisiopatología , Privación de Agua/fisiología , Animales , Apoptosis/fisiología , Deshidratación/fisiopatología , Fluidoterapia/veterinaria , Inflamación/veterinaria , Masculino , Estrés Oxidativo
4.
Psychiatr Serv ; 63(9): 851-4, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22949018

RESUMEN

In response to the expanding public behavioral health care system, a network of 15 public-community psychiatry fellowships has developed over the past six years. The fellowship directors meet yearly to sustain and develop fellowships to recruit and retain psychiatrists in the public sector. This column describes five types of public-academic collaborations on which the fellowships are based. The collaborations focus on structural and fiscal arrangements; recruitment and retention; program evaluation, program research, and policy; primary care integration; and career development. These collaborations serve to train psychiatrists who will play a key role in the rapidly evolving health care system.


Asunto(s)
Becas , Psiquiatría/educación , Asociación entre el Sector Público-Privado/organización & administración , Universidades , Humanos , Desarrollo de Programa , Estados Unidos
5.
Psychiatr Serv ; 56(2): 202-5, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15703349

RESUMEN

OBJECTIVE: Muslims are one of the most rapidly growing minority groups in the United States and have experienced increased stress since September 11, 2001. The purpose of this study was to elucidate the roles of imams, Islamic clergy, in meeting the counseling needs of their communities. METHODS: An anonymous self-report questionnaire was mailed to 730 mosques across the United States. RESULTS: Sixty-two responses were received from a diverse group of imams, few of whom had received formal counseling training. Imams reported that their congregants came to them most often for religious or spiritual guidance and relationship or marital concerns. Imams reported that since September 11, 2001, there has been an increased need to counsel persons for discrimination. An increased need to counsel persons who were discriminated against was reported by all imams with congregations in which a majority are Arab American, 60 percent of imams with congregations in which a majority are South Asian American, and 50 percent of imams with congregations in which a majority are African American. CONCLUSIONS: Although imams have little formal training in counseling, they are asked to help congregants who come to them with mental health and social service issues. Imams need more support from mental health professionals to fulfill a potentially vital role in improving access to services for minority Muslim communities in which there currently appear to be unmet psychosocial needs.


Asunto(s)
Clero , Servicios Comunitarios de Salud Mental/normas , Consejo/métodos , Necesidades y Demandas de Servicios de Salud , Islamismo/psicología , Trastornos Mentales/etnología , Trastornos Mentales/terapia , Rol Profesional , Consejo/estadística & datos numéricos , Humanos , Masculino , Trastornos Mentales/epidemiología , Persona de Mediana Edad , Grupos Minoritarios/clasificación , Grupos Minoritarios/psicología , Prevalencia , Psicología , Encuestas y Cuestionarios , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...