Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Biotechnol J ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685599

RESUMEN

Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.

2.
ACS Synth Biol ; 13(3): 837-850, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38349963

RESUMEN

The World Health Organization's global initiative toward eliminating high-risk Human Papillomavirus (hrHPV)-related cancers recommends DNA testing over visual inspection in all settings for primary cancer screening and HPV eradication by 2100. However, multiple hrHPV types cause different types of cancers, and there is a pressing need for an easy-to-use, multiplex point-of-care diagnostic platform for detecting different hrHPV types. Recently, CRISPR-Cas systems have been repurposed for point-of-care detection. Here, we established a CRISPR-Cas multiplexed diagnostic assay (CRISPRD) to detect cervical cancer-causing hrHPVs in one reaction (one-pot assay). We harnessed the compatibility of thermostable AapCas12b, TccCas13a, and HheCas13a nucleases with isothermal amplification and successfully detected HPV16 and HPV18, along with an internal control in a single-pot assay with a limit of detection of 10 copies and 100% specificity. This platform offers a rapid and practical solution for the multiplex detection of hrHPVs, which may facilitate large-scale hrHPV point-of-care screening. Furthermore, the CRISPRD platform programmability enables it to be adapted for the multiplex detection of any two nucleic acid biomarkers as well as internal control.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/prevención & control , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/prevención & control , Pruebas en el Punto de Atención , Papillomavirus Humano 16/genética
3.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386704

RESUMEN

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte de Proteínas , Transporte Biológico , Proteolisis , Osmorregulación , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas de Arabidopsis/genética
4.
Anal Chem ; 95(38): 14209-14218, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37696750

RESUMEN

Monitoring diseases caused by pathogens or by mutations in DNA sequences requires accurate, rapid, and sensitive tools to detect specific nucleic acid sequences. Here, we describe a new peptide nucleic acid (PNA)-based nucleic acid detection toolkit, termed PNA-powered diagnostics (PNA-Pdx). PNA-Pdx employs PNA probes that bind specifically to a target and are then detected in lateral flow assays. This can precisely detect a specific pathogen or genotype genomic sequence. PNA probes can also be designed to invade double-stranded DNAs (dsDNAs) to produce single-stranded DNAs for precise CRISPR-Cas12b-based detection of genomic SNPs without requiring the protospacer-adjacent motif (PAM), as Cas12b requires PAM sequences only for dsDNA targets. PNA-Pdx identified target nucleic acid sequences at concentrations as low as 2 copies/µL and precisely detected the SARS-CoV-2 genome in clinical samples in 40 min. Furthermore, the specific dsDNA invasion by the PNA coupled with CRISPR-Cas12b precisely detected genomic SNPs without PAM restriction. Overall, PNA-Pdx provides a novel toolkit for nucleic acid and SNP detection as well as highlights the benefits of engineering PNA probes for detecting nucleic acids.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , Humanos , Ácidos Nucleicos de Péptidos/genética , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Péptidos
5.
Nat Commun ; 14(1): 1464, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928189

RESUMEN

Antimicrobial peptides (AMPs) are promising next-generation antibiotics that can be used to combat drug-resistant pathogens. However, the high cost involved in AMP synthesis and their short plasma half-life render their clinical translation a challenge. To address these shortcomings, we report efficient production of bioactive amidated AMPs by transient expression of glycine-extended AMPs in Nicotiana benthamiana line expressing the mammalian enzyme peptidylglycine α-amidating mono-oxygenase (PAM). Cationic AMPs accumulate to substantial levels in PAM transgenic plants compare to nontransgenic N. benthamiana. Moreover, AMPs purified from plants exhibit robust killing activity against six highly virulent and antibiotic resistant ESKAPE pathogens, prevent their biofilm formation, analogous to their synthetic counterparts and synergize with antibiotics. We also perform a base case techno-economic analysis of our platform, demonstrating the potential economic advantages and scalability for industrial use. Taken together, our experimental data and techno-economic analysis demonstrate the potential use of plant chassis for large-scale production of clinical-grade AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Animales , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos/biosíntesis , Mamíferos , Plantas , Nicotiana/química , Nicotiana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos
6.
Front Bioeng Biotechnol ; 11: 1118684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741753

RESUMEN

Rapid, specific, and robust diagnostic strategies are needed to develop sensitive biosensors for small molecule detection, which could aid in controlling contamination and disease transmission. Recently, the target-induced collateral activity of Cas nucleases [clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases] was exploited to develop high-throughput diagnostic modules for detecting nucleic acids and small molecules. Here, we have expanded the diagnostic ability of the CRISPR-Cas system by developing Bio-SCAN V2, a ligand-responsive CRISPR-Cas platform for detecting non-nucleic acid small molecule targets. The Bio-SCAN V2 consists of an engineered ligand-responsive sgRNA (ligRNA), biotinylated dead Cas9 (dCas9-biotin), 6-carboxyfluorescein (FAM)-labeled amplicons, and lateral flow assay (LFA) strips. LigRNA interacts with dCas9-biotin only in the presence of sgRNA-specific ligand molecules to make a ribonucleoprotein (RNP). Next, the ligand-induced ribonucleoprotein is exposed to FAM-labeled amplicons for binding, and the presence of the ligand (small molecule) is detected as a visual signal [(dCas9-biotin)-ligRNA-FAM labeled DNA-AuNP complex] at the test line of the lateral flow assay strip. With the Bio-SCAN V2 platform, we are able to detect the model molecule theophylline with a limit of detection (LOD) up to 2 µM in a short time, requiring only 15 min from sample application to visual readout. Taken together, Bio-SCAN V2 assay provides a rapid, specific, and ultrasensitive detection platform for theophylline.

7.
Mol Biotechnol ; 65(2): 162-180, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35119645

RESUMEN

Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.


Asunto(s)
Glycine max , Fitomejoramiento , Animales , Glycine max/genética , Plantas Modificadas Genéticamente/genética , Fitomejoramiento/métodos , Pollos/genética , Ingeniería Genética/métodos , Sistemas CRISPR-Cas , Genoma de Planta
8.
Plant Biotechnol J ; 20(12): 2418-2429, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36072993

RESUMEN

Efficient pathogen diagnostics and genotyping methods enable effective disease management and breeding, improve crop productivity and ensure food security. However, current germplasm selection and pathogen detection techniques are laborious, time-consuming, expensive and not easy to mass-scale application in the field. Here, we optimized a field-deployable lateral flow assay, Bio-SCAN, as a highly sensitive tool to precisely identify elite germplasm and detect mutations, transgenes and phytopathogens in <1 h, starting from sample isolation to result output using lateral flow strips. As a proof of concept, we genotyped various wheat germplasms for the Lr34 and Lr67 alleles conferring broad-spectrum resistance to stripe rust, confirmed the presence of synthetically produced herbicide-resistant alleles in the rice genome and screened for the presence of transgenic elements in the genome of transgenic tobacco and rice plants with 100% specificity. We also successfully applied this new assay to the detection of phytopathogens, including viruses and bacterial pathogens in Nicotiana benthamiana, and two destructive fungal pathogens (Puccinia striiformis f. sp. tritici and Magnaporthe oryzae Triticum) in wheat. Our results illustrate the power of Bio-SCAN in crop breeding, genetic engineering and pathogen diagnostics to enhance food security. The high sensitivity, simplicity, versatility and in-field deployability make the Bio-SCAN as an attractive molecular diagnostic tool for diverse applications in agriculture.


Asunto(s)
Basidiomycota , Oryza , Genotipo , Fitomejoramiento , Nicotiana , Triticum/genética , Agricultura , Oryza/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
9.
Proc Natl Acad Sci U S A ; 119(28): e2118260119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35763567

RESUMEN

Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/µL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.


Asunto(s)
Proteínas Bacterianas , COVID-19 , Proteínas Asociadas a CRISPR , Clostridiales , Endodesoxirribonucleasas , Pruebas en el Punto de Atención , SARS-CoV-2 , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Biotecnología , COVID-19/diagnóstico , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/genética , Clostridiales/enzimología , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/clasificación , Endodesoxirribonucleasas/genética , Estabilidad de Enzimas , Calor , Humanos , Filogenia , SARS-CoV-2/aislamiento & purificación
10.
Trends Biotechnol ; 40(4): 374-376, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35153078

RESUMEN

CRISPR-Cas9 creates remarkable possibilities to modify targeted regions in genomic DNA. However, CRISPR-Cas-mediated DNA double-stranded breaks (DSBs), that tend to generate random insertions or deletions, limit this technology. Recently, Anzalone et al. developed a 'twin prime editing' tool to replace, integrate, or delete large genomic DNA sequences without generating DNA DSBs.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN
11.
ACS Synth Biol ; 11(1): 430-440, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34978812

RESUMEN

Synthetic biology holds great promise for translating ideas into products to address the grand challenges facing humanity. Molecular biomanufacturing is an emerging technology that facilitates the production of key products of value, including therapeutics and select chemical compounds. Current biomanufacturing technologies require improvements to overcome limiting factors, including efficient production, cost, and safe release; therefore, developing optimum chassis for biomolecular manufacturing is of great interest for enabling diverse synthetic biology applications. Here, we harnessed the power of the CRISPR-Cas12 system to design, build, and test a DNA device for genome shredding, which fragments the native genome to enable the conversion of bacterial cells into nonreplicative, biosynthetically active, and programmable molecular biomanufacturing chassis. As a proof of concept, we demonstrated the efficient production of green fluorescent protein and violacein, an antimicrobial and antitumorigenic compound. Our CRISPR-Cas12-based chromosome-shredder DNA device has built-in biocontainment features providing a roadmap for the conversion of any bacterial cell into a chromosome-shredded chassis amenable to high-efficiency molecular biomanufacturing, thereby enabling exciting and diverse biotechnological applications.


Asunto(s)
Sistemas CRISPR-Cas , Biología Sintética , Biotecnología , Sistemas CRISPR-Cas/genética , Cromosomas , ADN/genética
12.
ACS Synth Biol ; 11(1): 406-419, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34939798

RESUMEN

Simple, rapid, specific, and sensitive point-of-care detection methods are needed to contain the spread of SARS-CoV-2. CRISPR/Cas9-based lateral flow assays are emerging as a powerful alternative for COVID-19 diagnostics. Here, we developed Bio-SCAN (biotin-coupled specific CRISPR-based assay for nucleic acid detection) as an accurate pathogen detection platform that requires no sophisticated equipment or technical expertise. Bio-SCAN detects the SARS-CoV-2 genome in less than 1 h from sample collection to result. In the first step, the target nucleic acid sequence is isothermally amplified in 15 min via recombinase polymerase amplification before being precisely detected by biotin-labeled nuclease-dead SpCas9 (dCas9) on commercially available lateral flow strips. The resulting readout is visible to the naked eye. Compared to other CRISPR-Cas-based pathogen detection assays, Bio-SCAN requires no additional reporters, probes, enhancers, reagents, or sophisticated devices to interpret the results. Bio-SCAN is highly sensitive and successfully detected a clinically relevant level (4 copies/µL) of synthetic SARS-CoV-2 RNA genome. Similarly, Bio-SCAN showed 100% negative and 96% positive predictive agreement with RT-qPCR results when using clinical samples (86 nasopharyngeal swab samples). Furthermore, incorporating variant-specific sgRNAs in the detection reaction allowed Bio-SCAN to efficiently distinguish between the α, ß, and δ SARS-CoV-2 variants. Also, our results confirmed that the Bio-SCAN reagents have a long shelf life and can be assembled locally in nonlaboratory and limited-resource settings. Furthermore, the Bio-SCAN platform is compatible with the nucleic acid quick extraction protocol. Our results highlight the potential of Bio-SCAN as a promising point-of-care diagnostic platform that can facilitate low-cost mass screening for SARS-CoV-2.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , Sistemas CRISPR-Cas , Sistemas de Atención de Punto , ARN Viral/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos , SARS-CoV-2/genética
13.
Brain Commun ; 3(3): fcab183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557665

RESUMEN

WIPI2 is a member of the human WIPI protein family (seven-bladed b-propeller proteins binding phosphatidylinositols, PROPPINs), which play a pivotal role in autophagy and has been implicated in the pathogenesis of several neurological conditions. The homozygous WIPI2 variant c.745G>A; p.(Val249Met) (NM_015610.4) has recently been associated with a neurodevelopmental disorder in a single family. Using exome sequencing and Sanger segregation analysis, here, two novel homozygous WIPI2 variants [c.551T>G; p.(Val184Gly) and c.724C>T; p.(Arg242Trp) (NM_015610.4)] were identified in four individuals of two consanguineous families. Additionally, follow-up clinical data were sought from the previously reported family. Three non-ambulant affected siblings of the first family harbouring the p.(Val184Gly) missense variant presented with microcephaly, profound global developmental delay/intellectual disability, refractory infantile/childhood-onset epilepsy, progressive tetraplegia with joint contractures and dyskinesia. In contrast, the proband of the second family carrying the p.(Arg242Trp) missense variant, similar to the initially reported WIPI2 cases, presented with a milder phenotype, encompassing moderate intellectual disability, speech and visual impairment, autistic features, and an ataxic gait. Brain MR imaging in five patients showed prominent white matter involvement with a global reduction in volume, posterior corpus callosum hypoplasia, abnormal dentate nuclei and hypoplasia of the inferior cerebellar vermis. To investigate the functional impact of these novel WIPI2 variants, we overexpressed both in WIPI2-knockout HEK293A cells. In comparison to wildtype, expression of the Val166Gly WIPI2b mutant resulted in a deficient rescue of LC3 lipidation whereas Arg224Trp mutant increased LC3 lipidation, in line with the previously reported Val231Met variant. These findings support a dysregulation of the early steps of the autophagy pathway. Collectively, our findings provide evidence that biallelic WIPI2 variants cause a neurodevelopmental disorder of variable severity and disease course. Our report expands the clinical spectrum and establishes WIPI2-related disorder as a congenital disorders of autophagy.

14.
Nano Lett ; 21(8): 3596-3603, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33844549

RESUMEN

Rapid, sensitive, and specific point-of-care testing for pathogens is crucial for disease control. Lateral flow assays (LFAs) have been employed for nucleic acid detection, but they have limited sensitivity and specificity. Here, we used a fusion of catalytically inactive SpCas9 endonuclease and VirD2 relaxase for sensitive, specific nucleic acid detection by LFA. In this assay, the target nucleic acid is amplified with biotinylated oligos. VirD2-dCas9 specifically binds the target sequence via dCas9 and covalently binds to a FAM-tagged oligonucleotide via VirD2. The biotin label and FAM tag are detected by a commercially available LFA. We coupled this system, named Vigilant (VirD2-dCas9 guided and LFA-coupled nucleic acid test), to reverse transcription-recombinase polymerase amplification to detect SARS-CoV2 in clinical samples. Vigilant exhibited a limit of detection of 2.5 copies/µL, comparable to CRISPR-based systems, and showed no cross-reactivity with SARS-CoV1 or MERS. Vigilant offers an easy-to-use, rapid, cost-effective, and robust detection platform for SARS-CoV2.


Asunto(s)
COVID-19 , ARN Viral , Sistemas CRISPR-Cas , Humanos , Transcripción Reversa , SARS-CoV-2 , Sensibilidad y Especificidad
15.
Viruses ; 13(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33808947

RESUMEN

One important factor for successful disease management is the ability to rapidly and accurately identify the causal agent. Plant viruses cause severe economic losses and pose a serious threat to sustainable agriculture. Therefore, optimization of the speed, sensitivity, feasibility, portability, and accuracy of virus detection is urgently needed. Here, we developed a clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid diagnostic method utilizing the CRISPR-Cas12a system for detecting two geminiviruses, tomato yellow leaf curl virus (TYLCV) and tomato leaf curl New Delhi virus (ToLCNDV), which have single-stranded DNA genomes. Our assay detected TYLCV and ToLCNDV in infected plants with high sensitivity and specificity. Our newly developed assay can be performed in ~1 h and provides easy-to-interpret visual readouts using a simple, low-cost fluorescence visualizer, making it suitable for point-of-use applications.


Asunto(s)
Begomovirus/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Enfermedades de las Plantas/virología , Begomovirus/aislamiento & purificación , Técnicas Biosensibles/métodos , ADN de Plantas/genética , Genoma Viral/genética , Solanum lycopersicum/virología , Técnicas de Diagnóstico Molecular/métodos
16.
Front Bioeng Biotechnol ; 9: 800104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127671

RESUMEN

Rapid, specific, and sensitive detection platforms are prerequisites for early pathogen detection to efficiently contain and control the spread of contagious diseases. Robust and portable point-of-care (POC) methods are indispensable for mass screening of SARS-CoV-2. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based nucleic acid detection technologies coupled with isothermal amplification methods provide a straightforward and easy-to-handle platform for detecting SARS-CoV-2 at POC, low-resource settings. Recently, we developed iSCAN, a two-pot system based on coupled loop-mediated isothermal amplification (LAMP) and CRISPR/Cas12a reactions. However, in two-pot systems, the tubes must be opened to conduct both reactions; two-pot systems thus have higher inherent risks of cross-contamination and a more cumbersome workflow. In this study, we developed and optimized iSCAN-V2, a one-pot reverse transcription-recombinase polymerase amplification (RT-RPA)-coupled CRISPR/Cas12b-based assay for SARS-CoV-2 detection, at a single temperature in less than an hour. Compared to Cas12a, Cas12b worked more efficiently in the iSCAN-V2 detection platform. We assessed and determined the critical factors, and present detailed guidelines and considerations for developing and establishing a one-pot assay. Clinical validation of our iSCAN-V2 detection module with reverse transcription-quantitative PCR (RT-qPCR) on patient samples showed 93.75% sensitivity and 100% specificity. Furthermore, we coupled our assay with a low-cost, commercially available fluorescence visualizer to enable its in-field deployment and use for SARS-CoV-2 detection. Taken together, our optimized iSCAN-V2 detection platform displays critical features of a POC molecular diagnostic device to enable mass-scale screening of SARS-CoV-2 in low-resource settings.

17.
Plant Physiol ; 186(4): 1770-1785, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35237805

RESUMEN

Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , Virus de Plantas/patogenicidad , Productos Agrícolas/genética , Productos Agrícolas/virología , Edición Génica/métodos
18.
Virus Res ; 288: 198129, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32822689

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 affects all aspects of human life. Detection platforms that are efficient, rapid, accurate, specific, sensitive, and user friendly are urgently needed to manage and control the spread of SARS-CoV-2. RT-qPCR based methods are the gold standard for SARS-CoV-2 detection. However, these methods require trained personnel, sophisticated infrastructure, and a long turnaround time, thereby limiting their usefulness. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP), a one-step nucleic acid amplification method conducted at a single temperature, has been used for colorimetric virus detection. CRISPR-Cas12 and CRISPR-Cas13 systems, which possess collateral activity against ssDNA and RNA, respectively, have also been harnessed for virus detection. Here, we built an efficient, rapid, specific, sensitive, user-friendly SARS-CoV-2 detection module that combines the robust virus amplification of RT-LAMP with the specific detection ability of SARS-CoV-2 by CRISPR-Cas12. Furthermore, we combined the RT-LAMP-CRISPR-Cas12 module with lateral flow cells to enable highly efficient point-of-care SARS-CoV-2 detection. Our iSCAN SARS-CoV-2 detection module, which exhibits the critical features of a robust molecular diagnostic device, should facilitate the effective management and control of COVID-19.


Asunto(s)
Betacoronavirus/genética , Sistemas CRISPR-Cas , Técnicas de Laboratorio Clínico/métodos , Colorimetría/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Neumonía Viral/diagnóstico , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/instrumentación , Colorimetría/instrumentación , Infecciones por Coronavirus/virología , Endodesoxirribonucleasas/química , Humanos , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Pandemias , Neumonía Viral/virología , Sistemas de Atención de Punto , Reología , SARS-CoV-2 , Sensibilidad y Especificidad
19.
Commun Biol ; 3(1): 44, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974493

RESUMEN

Precise genome editing by systems such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) requires high-efficiency homology-directed repair (HDR). Different technologies have been developed to improve HDR but with limited success. Here, we generated a fusion between the Cas9 endonuclease and the Agrobacterium VirD2 relaxase (Cas9-VirD2). This chimeric protein combines the functions of Cas9, which produces targeted and specific DNA double-strand breaks (DSBs), and the VirD2 relaxase, which brings the repair template in close proximity to the DSBs, to facilitate HDR. We successfully employed our Cas9-VirD2 system for precise ACETOLACTATE SYNTHASE (OsALS) allele modification to generate herbicide-resistant rice (Oryza sativa) plants, CAROTENOID CLEAVAGE DIOXYGENASE-7 (OsCCD7) to engineer plant architecture, and generate in-frame fusions with the HA epitope at HISTONE DEACETYLASE (OsHDT) locus. The Cas9-VirD2 system expands our ability to improve agriculturally important traits in crops and opens new possibilities for precision genome engineering across diverse eukaryotic species.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Edición Génica , Ingeniería Genética , Oryza/genética , Proteínas Recombinantes de Fusión , Reparación del ADN por Recombinación , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Genes de Plantas , Ingeniería Genética/métodos , Genoma de Planta , Resistencia a los Herbicidas/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Fenotipo , Unión Proteica
20.
Front Genome Ed ; 2: 6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34713215

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a powerful tool for genome engineering in plants. The RNA-guided Cas9 endonuclease is usually delivered into plant cells as a DNA construct encoding Cas9 and the single guide RNA (sgRNA). However, constitutive expression of nucleases may cause off target mutations. In addition, DNA constructs can integrate into the host genome, causing mutations and complicating regulatory approval. Instead of DNA, here we deliver Cas9 through the Agrobacterium T4SS, accomplished by fusion of the VirF T4SS translocation peptide to Cas9 (NCas9F). Co-cultivation of Agrobacteria expressing NCas9F with yeast (Saccharomyces cerevisiae) harboring a sgRNA targeting CAN1 showed that NCas9F was translocated via T4SS and induced targeted mutations in the yeast genome. Infiltration of Nicotiana benthamiana leaves with Agrobacteria expressing NCas9F and sgRNA-PHYTOENE DESATURASE (PDS) resulted in targeted modifications at the PDS locus, albeit at a very low rate. In order to increase the mutation frequency NCas9F protein was co-transported with a T-DNA encoding sgRNA-PDS1. Next generation sequencing confirmed that this resulted in targeted mutations at the PDS locus with a similar distribution but at a 5-fold lower frequency as the mutations obtained with a T-DNA encoding both Cas9 and sgRNA-PDS1. Similarly, infection with Tobacco rattle virus (TRV) encoding sgRNA-PDS2 combined with NCas9F protein translocation resulted in an equally high frequency of PDS mutations in N. benthamiana compared to T-DNA encoded sgRNA-PDS1 combined with NCas9F protein translocation. Our results revealed that translocation of NCas9F protein via the Agrobacterium T4SS can be used for targeted mutagenesis in host cells instead of the permanent and constitutive expression of Cas9 from a T-DNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA