Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunol Invest ; 50(4): 445-459, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32633164

RESUMEN

We describe a cohort of 25 Iranian patients with infantile inflammatory bowel disease (IBD), 14 (56%) of whom had monogenic defects. After proper screening, patients were referred for whole exome sequencing (WES). Four patients had missense mutations in the IL10 RA, and one had a large deletion in the IL10 RB. Four patients had mutations in genes implicated in host:microbiome homeostasis, including TTC7A deficiency, and two patients with novel mutations in the TTC37 and NOX1. We found a novel homozygous mutation in the SRP54 in a deceased patient and the heterozygous variant in his sibling with a milder phenotype. Three patients had combined immunodeficiency: one with ZAP-70 deficiency (T+B+NK-), and two with atypical SCID due to mutations in RAG1 and LIG4. One patient had a G6PC3 mutation without neutropenia. Eleven of the 14 patients with monogenic defects were results of consanguinity and only 4 of them were alive to this date.


Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Preescolar , Estudios de Cohortes , Diarrea/genética , Femenino , Humanos , Lactante , Recién Nacido , Irán , Masculino , Mutación , Receptores de Interleucina-10/genética , Sistema de Registros , Secuenciación del Exoma
2.
Ultramicroscopy ; 206: 112812, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31382231

RESUMEN

Transmission Kikuchi Diffraction (TKD) in the scanning electron microscope has been developing at a fast pace since its introduction less than a decade ago. The recently presented on-axis detector configuration, with its optimized geometry, has significantly increased the signal yield and facilitated the acquisition of STEM images in bright field (BF) and dark field (DF) mode, in addition to the automated orientation mapping of nanocrystalline electron transparent samples. However, the physical position of the integrated imaging system, located outside the detector screen, requires its movement in order to combine high resolution STEM images with high resolution orientation measurements. The difference between the two positions makes it impossible to acquire optimal signals simultaneously, leading to challenges when investigating site-specific nanocrystalline microstructures. To eliminate this drawback, a new imaging capability was added at the centre of the on-axis TKD detector, thus enabling acquisition of optimal quality BF images and orientation maps without detector movement. The advantages brought about by this new configuration are presented and the associated limitations are discussed.

3.
Nat Commun ; 9(1): 5070, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498194

RESUMEN

Silicon-based impurities are ubiquitous in natural graphite. However, their role as a contaminant in exfoliated graphene and their influence on devices have been overlooked. Herein atomic resolution microscopy is used to highlight the existence of silicon-based contamination on various solution-processed graphene. We found these impurities are extremely persistent and thus utilising high purity graphite as a precursor is the only route to produce silicon-free graphene. These impurities are found to hamper the effective utilisation of graphene in whereby surface area is of paramount importance. When non-contaminated graphene is used to fabricate supercapacitor microelectrodes, a capacitance value closest to the predicted theoretical capacitance for graphene is obtained. We also demonstrate a versatile humidity sensor made from pure graphene oxide which achieves the highest sensitivity and the lowest limit of detection ever reported. Our findings constitute a vital milestone to achieve commercially viable and high performance graphene-based devices.

4.
Int J Pediatr Otorhinolaryngol ; 96: 122-126, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28390600

RESUMEN

BACKGROUND: Waardenburg syndrome (WS) is a neurocristopathy characterized by hearing impairment and pigmentary disturbances in hair, eyes, and skin. WS is clinically heterogeneous and can be subdivided into four major types (WS1-WS4) where WS4 or Shah-Waardenburg is diagnosed when WS2 is accompanied by Hirschsprung disease (HD). Mutations of SOX10, EDN3/EDNRB have been identified in association with WS4. This study was aimed to determine the pathogenic variant in an Iranian pedigree affected with WS4. METHOD: A two-generation pedigree with three affected members and considerable phenotypic heterogeneity was recruited. The proband was a 15-year-old boy, with severe to profound sensorineural hearing impairment, heterochromia iridis, hypoplastic blue eyes and Hirschprung disease. The other two also presented characteristics of WS2 and complained of chronic constipation with normal anorectal reflex. Sequencing of all exons and exon-intron boundaries of SOX10, EDN3/EDNRB revealed a heterozygous variant c.422T > C in exon 3 of SOX10 confirmed by a series of evidence to be pathogenic. It resulted in p.L141P at the protein level. Leucin 141 is located in Nuclear Export signal, HMG box of the protein. CONCLUSION: This study is the first report of a WS4 family in the Iranian population. The mutation is associated with distinctive phenotypic profile (association of anosmia and chronic constipation with SOX10 mutations) and could further improve diagnosis and counseling of WS in the Iranian population and can contribute to phenotype-directed genetic analysis.


Asunto(s)
Factores de Transcripción SOXE/genética , Síndrome de Waardenburg/genética , Adolescente , Femenino , Pruebas Genéticas/métodos , Heterocigoto , Humanos , Irán , Masculino , Mutación , Linaje , Fenotipo , Adulto Joven
5.
Nature ; 517(7535): 472-5, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25612050

RESUMEN

Palaeomagnetic measurements of meteorites suggest that, shortly after the birth of the Solar System, the molten metallic cores of many small planetary bodies convected vigorously and were capable of generating magnetic fields. Convection on these bodies is currently thought to have been thermally driven, implying that magnetic activity would have been short-lived. Here we report a time-series palaeomagnetic record derived from nanomagnetic imaging of the Imilac and Esquel pallasite meteorites, a group of meteorites consisting of centimetre-sized metallic and silicate phases. We find a history of long-lived magnetic activity on the pallasite parent body, capturing the decay and eventual shutdown of the magnetic field as core solidification completed. We demonstrate that magnetic activity driven by progressive solidification of an inner core is consistent with our measured magnetic field characteristics and cooling rates. Solidification-driven convection was probably common among small body cores, and, in contrast to thermally driven convection, will have led to a relatively late (hundreds of millions of years after accretion), long-lasting, intense and widespread epoch of magnetic activity among these bodies in the early Solar System.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...