Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Hazard Mater ; 476: 135067, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964039

RESUMEN

Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.

2.
Nat Aging ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951692

RESUMEN

Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.

6.
J Clin Psychiatry ; 85(3)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38917366

RESUMEN

Objective: To test esmethadone (REL-1017) as adjunctive treatment in patients with major depressive disorder (MDD) and inadequate response to standard antidepressants.Methods: In this phase 3, double-blind, placebo-controlled trial, outpatients with MDD (DSM-5) were randomized to daily oral esmethadone (75 mg on day 1, followed by 25 mg daily on days 2 through 28) or placebo between December 2020 and December 2022. The primary efficacy measure was change from baseline (CFB) to day 28 in the Montgomery-Asberg Depression Rating Scale (MADRS) score. The intent-to-treat (ITT) population included all randomized participants. The per-protocol (PP) population included completers without major protocol deviations impacting assessment. Post hoc analyses included participants with severe depression (baseline MADRS score ≥35).Results: For the ITT analysis (n = 227), mean CFB was 15.1 (SD 11.3) for esmethadone (n = 113) and 12.9 (SD 10.4) for placebo (n = 114), with a mean difference (MD) of 2.3, which was not statistically significant (P = .154; Cohen effect size [ES] = 0.21). Remission rates were 22.1% and 13.2% (P = .076), and response rates were 39.8% and 27.2% (P = .044) with esmethadone and placebo, respectively. For the PP analysis (n = 198), mean CFB was 15.6 (SD 11.2) for esmethadone (n = 101) and 12.5 (SD 9.9) for placebo (n = 97), with an MD of 3.1 (P = .051; ES =0.29). In post hoc analyses of patients with baseline MADRS ≥35 in the ITT population (n = 112), MD was 6.9; P = .0059; ES = 0.57, and for the PP population (n = 98), MD was 7.9; P = .0015; ES = 0.69. Adverse events (AEs) were predominantly mild or moderate and transient, with no significant differences between groups.Conclusions: The primary end point was not met. Esmethadone showed stronger efficacy in PP than in ITT analyses, with the discrepancy not attributable to AEs impacting treatment adherence. Significant efficacy occurred in post hoc analyses of patients with severe depression. Esmethadone was well tolerated, consistent with prior studies.Trial Registration: ClinicalTrials.gov identifier: NCT04688164.


Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Masculino , Adulto , Femenino , Método Doble Ciego , Persona de Mediana Edad , Antidepresivos/efectos adversos , Antidepresivos/administración & dosificación , Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Resultado del Tratamiento , Quimioterapia Combinada
7.
Cancer Cell ; 42(4): 646-661.e9, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38428412

RESUMEN

Cellular senescence can exert dual effects in tumors, either suppressing or promoting tumor progression. The senescence-associated secretory phenotype (SASP), released by senescent cells, plays a crucial role in this dichotomy. Consequently, the clinical challenge lies in developing therapies that safely enhance senescence in cancer, favoring tumor-suppressive SASP factors over tumor-promoting ones. Here, we identify the retinoic-acid-receptor (RAR) agonist adapalene as an effective pro-senescence compound in prostate cancer (PCa). Reactivation of RARs triggers a robust senescence response and a tumor-suppressive SASP. In preclinical mouse models of PCa, the combination of adapalene and docetaxel promotes a tumor-suppressive SASP that enhances natural killer (NK) cell-mediated tumor clearance more effectively than either agent alone. This approach increases the efficacy of the allogenic infusion of human NK cells in mice injected with human PCa cells, suggesting an alternative therapeutic strategy to stimulate the anti-tumor immune response in "immunologically cold" tumors.


Asunto(s)
Senescencia Celular , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Receptores de Ácido Retinoico , Células Asesinas Naturales , Adapaleno
8.
Clin Adv Hematol Oncol ; 21(10): 533-535, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948589
9.
Nature ; 623(7989): 1053-1061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844613

RESUMEN

Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.


Asunto(s)
Antagonistas de Receptores Androgénicos , Antineoplásicos , Quimiotaxis , Resistencia a Antineoplásicos , Células Mieloides , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Quimiotaxis/efectos de los fármacos , Progresión de la Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Antígeno Lewis X/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Metástasis de la Neoplasia , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
10.
iScience ; 26(8): 107368, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37559908

RESUMEN

Although dietary fructose is associated with an elevated risk for pancreatic cancer, the underlying mechanisms remain elusive. Here, we report that ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, is a driver of PDAC development. We demonstrate that fructose triggers KHK and induces fructolytic gene expression in mouse and human PDAC. Genetic inactivation of KhkC enhances the survival of KPC-driven PDAC even in the absence of high fructose diet. Furthermore, it decreases the viability, migratory capability, and growth of KPC cells in a cell autonomous manner. Mechanistically, we demonstrate that genetic ablation of KHKC strongly impairs the activation of KRAS-MAPK pathway and of rpS6, a downstream target of mTORC signaling. Moreover, overexpression of KHKC in KPC cells enhances the downstream KRAS pathway and cell viability. Our data provide new insights into the role of KHK in PDAC progression and imply that inhibiting KHK could have profound implications for pancreatic cancer therapy.

12.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460872

RESUMEN

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Masculino , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Próstata/genética , Células Mieloides/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismo
13.
Nat Rev Urol ; 20(12): 706-718, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37491512

RESUMEN

The human body hosts a complex and dynamic population of trillions of microorganisms - the microbiota - which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2-ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/genética , Probióticos/uso terapéutico , Próstata/patología , Carcinogénesis
14.
Cell Commun Signal ; 21(1): 76, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055829

RESUMEN

Androgen deprivation therapy (ADT) is a standard therapy for prostate cancer (PCa). Though disseminated disease is initially sensitive to ADT, an important fraction of the patients progresses to castration-resistant prostate cancer (CRPC). For this reason, the identification of novel effective therapies for treating CRPC is needed. Immunotherapeutic strategies focused on macrophages as antitumor effectors, directly enhancing their tumoricidal potential at the tumor microenvironment or their adoptive transfer after ex vivo activation, have arisen as promising therapies in several cancer types. Despite several approaches centered on the activation of tumor-associated macrophages (TAMs) in PCa are under investigation, to date there is no evidence of clinical benefit in patients. In addition, the evidence of the effectiveness of macrophage adoptive transfer on PCa is poor. Here we find that VSSP, an immunomodulator of the myeloid system, decreases TAMs and inhibits prostatic tumor growth when administered to castrated Pten-deficient prostate tumor-bearing mice. In mice bearing castration-resistant Ptenpc-/-; Trp53pc-/- tumors, VSSP administration showed no effect. Nevertheless, adoptive transfer of macrophages activated ex vivo with VSSP inhibited Ptenpc-/-; Trp53pc-/- tumor growth through reduction of angiogenesis and tumor cell proliferation and induction of senescence. Taken together, our results highlight the rationale of exploiting macrophage functional programming as a promising strategy for CRPC therapy, with particular emphasis on ex vivo-activated proinflammatory macrophage adoptive transfer. Video abstract.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Ratones , Animales , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Antagonistas de Andrógenos/farmacología , Macrófagos , Próstata/patología , Proliferación Celular , Línea Celular Tumoral , Microambiente Tumoral
15.
Cancer Cell ; 41(3): 602-619.e11, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36868226

RESUMEN

Tumor cells promote the recruitment of immunosuppressive neutrophils, a subset of myeloid cells driving immune suppression, tumor proliferation, and treatment resistance. Physiologically, neutrophils are known to have a short half-life. Here, we report the identification of a subset of neutrophils that have upregulated expression of cellular senescence markers and persist in the tumor microenvironment. Senescent-like neutrophils express the triggering receptor expressed on myeloid cells 2 (TREM2) and are more immunosuppressive and tumor-promoting than canonical immunosuppressive neutrophils. Genetic and pharmacological elimination of senescent-like neutrophils decreases tumor progression in different mouse models of prostate cancer. Mechanistically, we have found that apolipoprotein E (APOE) secreted by prostate tumor cells binds TREM2 on neutrophils, promoting their senescence. APOE and TREM2 expression increases in prostate cancers and correlates with poor prognosis. Collectively, these results reveal an alternative mechanism of tumor immune evasion and support the development of immune senolytics targeting senescent-like neutrophils for cancer therapy.


Asunto(s)
Apolipoproteínas E , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/metabolismo , Senescencia Celular/genética , Glicoproteínas de Membrana/genética , Células Mieloides/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Inmunológicos/metabolismo , Microambiente Tumoral
17.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1463-1476, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36890259

RESUMEN

This review article presents select recent studies that form the basis for the development of esmethadone into a potential new drug. Esmethadone is a promising member of the pharmacological class of uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists that have shown efficacy for major depressive disorder (MDD) and other diseases and disorders, such as Alzheimer's dementia and pseudobulbar affect. The other drugs in the novel class of NMDAR antagonists with therapeutic uses that are discussed for comparative purposes in this review are esketamine, ketamine, dextromethorphan, and memantine. We present in silico, in vitro, in vivo, and clinical data for esmethadone and other uncompetitive NMDAR antagonists that may advance our understanding of the role of these receptors in neural plasticity in health and disease. The efficacy of NMDAR antagonists as rapid antidepressants may advance our understanding of the neurobiology of MDD and other neuropsychiatric diseases and disorders.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Humanos , Antagonistas de Aminoácidos Excitadores/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Memantina/farmacología , Memantina/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico
19.
Sci Rep ; 13(1): 73, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36593286

RESUMEN

The prognosis of patients with advanced urothelial carcinoma (UC) remains poor and improving treatment continues to be a major medical need. CUB domain containing protein 1 (CDCP1) is a known oncogene in various types of solid cancers and its overexpression is associated with impaired prognosis. However, its role in UC remains undetermined. Here we assessed the clinical relevance of CDCP1 in two cohorts of UC at different stages of the disease. Immunohistochemistry showed that CDCP1 is highly expressed in advanced UC, which significantly correlates with shorter overall survival. Importantly, the basal/squamous UC subtype showed significantly enriched CDCP1 at the mRNA and protein levels. The functional role of CDCP1 overexpression was assessed taking advantage of ex vivo organoids derived from the CDCP1pcLSL/+ transgenic mouse model. Furthermore, CDCP1 knockout UC cell lines were generated using CRISPR/Cas9 technology. Interestingly, CDCP1 overexpression significantly induced the activation of MAPK/ERK pathways in ex vivo organoids and increased their proliferation. Similarly, CDCP1 knockout in UC cell lines reduced their proliferation and migration, concomitant with MAPK/ERK pathway activity reduction. Our results highlight the relevance of CDCP1 in advanced UC and demonstrate its oncogenic role, suggesting that targeting CDCP1 could be a rational therapeutic strategy for the treatment of advanced UC.


Asunto(s)
Carcinoma de Células Transicionales , Moléculas de Adhesión Celular , Neoplasias de la Vejiga Urinaria , Neoplasias Urológicas , Animales , Humanos , Ratones , Antígenos de Neoplasias , Carcinoma de Células Transicionales/genética , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Proteínas de Neoplasias/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias Urológicas/genética
20.
Eur Urol ; 83(3): 224-238, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36114082

RESUMEN

BACKGROUND: B7-H3 is a cell surface immunomodulatory glycoprotein overexpressed in prostate cancers (PCs). Understanding its longitudinal expression at emergence of castration resistance and association with tumour genomics are critical to the development of and patient selection for B7-H3 targeted therapies. OBJECTIVE: To characterise B7-H3 expression in same-patient hormone-sensitive (HSPC) and castration-resistant (CRPC) PC biopsies, associating this with PC genomics, and to evaluate the antitumour activity of an anti-B7-H3 antibody-drug conjugate (ADC) in human CRPC in vitro and in vivo. DESIGN, SETTING, AND PARTICIPANTS: We performed immunohistochemistry and next-generation sequencing on a cohort of 98 clinically annotated CRPC biopsies, including 72 patients who also had HSPC biopsies for analyses. We analysed two CRPC transcriptome and exome datasets, and PC scRNASeq datasets. PC organoids (patient-derived xenograft [PDX]-derived organoids [PDX-Os]) were derived from PDXs generated from human CRPC biopsies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We evaluated B7-H3 mRNA expression in relation to a panel of 770 immune-related genes, compared B7-H3 protein expression between same-patient HSPC and CRPC biopsies, determined associations with PC genomic alterations, and evaluated the antitumour activity of DS-7300a, a topoisomerase-1 inhibitor payload anti-B7-H3 ADC, in human PC cell lines, organoids (PDX-Os), and xenografts (PDXs) of different histologies, B7-H3 expressions, and genomics. RESULTS AND LIMITATIONS: B7-H3 was among the most highly expressed immunomodulatory genes in CRPCs. Most CRPCs (93%) expressed B7-H3, and in patients who developed CRPC, B7-H3 expression was frequently expressed at the time of HSPC diagnosis (97%). Conversion from B7-H3 positive to negative, or vice versa, during progression from HSPC to CRPC was uncommon. CRPC with neuroendocrine features were more likely to be B7-H3 negative (28%) than adenocarcinomas. B7-H3 is overexpressed in tumours with defective DNA repair gene (ATM and BRCA2) alterations and is associated with ERG expression, androgen receptor (AR) expression, and AR activity signature. DS7300a had antitumour activity against B7-H3 expressing human PC models including cell lines, PDX-Os, and PDXs of adenocarcinoma and neuroendocrine histology. CONCLUSIONS: The frequent overexpression of B7-H3 in CRPC compared with normal tissue and other B7 family members implicates it as a highly relevant therapeutic target in these diseases. Mechanisms driving differences in B7-H3 expression across genomic subsets warrant investigation for understanding the role of B7-H3 in cancer growth and for the clinical development of B7-H3 targeted therapies. PATIENT SUMMARY: B7-H3, a protein expressed on the surface of the most lethal prostate cancers, in particular those with specific mutations, can be targeted using drugs that bind B7-H3. These findings are relevant for the development of such drugs and for deciding which patients to treat with these new drugs.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Antineoplásicos/uso terapéutico , Transducción de Señal , Biopsia , Factores de Transcripción/genética , Transcriptoma , Adenocarcinoma/tratamiento farmacológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...