Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Genomics Proteomics ; 19(4): 415-427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732327

RESUMEN

BACKGROUND: The alternative transcriptional isoform of Bruton's tyrosine kinase, BTK-C, is expressed in a wide variety of epithelial tumor types where it impacts apoptosis resistance, therapeutic escape, and glucose uptake. The initial exon in BTK-C encodes a 34 amino acid extension of the amino terminus of the canonical BTK-A isoform. Its function is unknown. MATERIALS AND METHODS: Site-directed mutagenesis, acylation assays and expression studies in cancer cell lines were used to determine the effects that the BTK-C first exon sequence has on kinase activity, subcellular localization and cell physiology. Analysis of BTK-C expression in tumors was conducted using genomic databases. RESULTS: BTK-C is palmitoylated on two cysteine residues. BTK-C localization at the plasma membrane is dependent upon phosphatidylinositol 3,4,5-triphosphate (PIP3) levels as well as palmitoylation. In epithelial cancer cells, both BTK-A and BTK-C isoforms are recruited to the plasma membrane; however, BTK-A also localizes to the nucleus whereas BTK-C has a primarily perinuclear distribution. Transcription of the BTK-C isoform is inversely correlated with expression of commonly activated breast cancer signaling receptors in breast tumors. In MDA-MB-231 cells, BTK-C expression confers modest increases in proliferation and glucose uptake rates compared to BTK-A. CONCLUSION: Palmitoylation affects localization and regulation of BTK-C in epithelial tumor cells where it functions as an important survival factor. Expression of either palmitoylated or non-palmitoylated kinase isoforms that function in PI3K signaling may be a common regulatory feature as nine other soluble kinases in the human genome possess similarly encoded alternative N-termini (ANT).


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Neoplasias de la Mama , Neoplasias Glandulares y Epiteliales , Agammaglobulinemia Tirosina Quinasa/química , Agammaglobulinemia Tirosina Quinasa/genética , Neoplasias de la Mama/patología , Femenino , Glucosa , Humanos , Lipoilación , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas
3.
Anal Chem ; 90(1): 980-987, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29198107

RESUMEN

Forensic science will be forever revolutionized if law enforcement can identify personal attributes of a person of interest solely from a fingerprint. For the past 2 years, the goal of our group has been to establish a way to identify originator attributes, specifically biological sex, from a single analyte. To date, an enzymatic assay and two chemical assays have been developed for the analysis of multiple analytes. In this manuscript, two additional assays have been developed. This time, however, the assays utilize only one amino acid each. The enzymatic assay targets alanine and employs alanine transaminase (ALT), pyruvate oxidase (POx), and horseradish peroxidase (HRP). The other, a chemical assay, is known as the Sakaguchi test and targets arginine. It is important to note that alanine has a significantly higher concentration than arginine in the fingerprint content of both males and females. Both assays proved to be capable of accurately differentiating between male and female fingerprints, regardless of their respective average concentration. The ability to target a single analyte will transform forensic science as each originator attribute can be correlated to a different analyte. This would then lead to the possibility of identifying multiple attributes from a single fingerprint sample. Ultimately, this would allow for a profile of a person of interest to be established without the need for time-consuming lab processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...