RESUMEN
In wild animal populations, there is a differentiation between populations due to natural selection. The direction and pressure of natural selection in the wild sheep are different in the various geographic areas. Linkage disequilibrium studies showed that regions of the genome in whole wild sheep are under natural selection and that natural selection can affect immune or reproductive or metabolic traits. The study aimed to identify genomic regions under natural selection in wild sheep. For this purpose, the genetic information of 24 European wild sheep and 24 Sardinian wild sheep was used. The genotypes were determined using Illumina 50 K SNPChip arrays based on Oar_4.0 version of the sheep genome. After quality control steps, finally, 31,560 SNP markers were analyzed. The value of LD was calculated by calculating the r2 statistic between all pairs of locations through PLINK software. To identify signs of selection based on linkage disequilibrium methods, an extended haplotype homozygosity test of XP-EHH crossing population and iHS intrapopulation was used. The results of iHS studies showed that in European and Sardinian wild sheep, the highest iHS coefficient under natural selection was observed on 3 and 2 chromosome numbers, respectively. Also, the results of XP-EHH studies showed that the largest XP-EHH coefficients under natural selection in European wild sheep compared to Sardinian and vice versa in Sardinian wild sheep compared to European wild sheep were observed on 3 and 16 chromosome numbers, respectively. In addition, the results of gene cycle studies showed that COPB1, SEC24D, ZDHHC17, BBS4, RFX3, SLC26A8, CAMK2D, GRIA1, GRM1, GRID2, PPP2R1A, CPEB4, PLEKHA5 and KIF13A, VPS39, VPS53, DTNBP1, DYNC1I1, FAM91A genes are under natural selection in Sardinian and European wild sheeps, respectively. The direction and selection pressure of natural selection in the two breeds of wild sheep is different due to different geographic conditions.
RESUMEN
CONTEXT: It's well-documented that most economic traits have a complex genetic structure that is controlled by additive and non-additive gene actions. Hence, knowledge of the underlying genetic architecture of such complex traits could aid in understanding how these traits respond to the selection in breeding and mating programs. Computing and having estimates of the non-additive effect for economic traits in sheep using genome-wide information can be important because; non-additive genes play an important role in the prediction accuracy of genomic breeding values and the genetic response to the selection. AIM: This study aimed to assess the impact of non-additive effects (dominance and epistasis) on the estimation of genetic parameters for body weight traits in sheep. METHODS: This study used phenotypic and genotypic belonging to 752 Scottish Blackface lambs. Three live weight traits considered in this study were included in body weight at 16, 20, and 24 weeks). Three genetic models including additive (AM), additive + dominance (ADM), and additive + dominance + epistasis (ADEM), were used. KEY RESULTS: The narrow sense heritability for weight at 16 weeks of age (BW16) were 0.39, 0.35, and 0.23, for 20 weeks of age (BW20) were 0.55, 0.54, and 0.42, and finally for 24 weeks of age (BW24) were 0.16, 0.12, and 0.02, using the AM, ADM, and ADEM models, respectively. The additive genetic model significantly outperformed the non-additive genetic model (p < 0.01). The dominance variance of the BW16, BW20, and BW24 accounted for 38, 6, and 30% of the total phenotypic, respectively. Moreover, the epistatic variance accounted for 39, 0.39, and 47% of the total phenotypic variances of these traits, respectively. In addition, our results indicated that the most important SNPs for live weight traits are on chromosomes 3 (three SNPS including s12606.1, OAR3_221188082.1, and OAR3_4106875.1), 8 (OAR8_16468019.1, OAR8_18067475.1, and OAR8_18043643.1), and 19 (OAR19_18010247.1), according to the genome-wide association analysis using additive and non-additive genetic model. CONCLUSIONS: The results emphasized that the non-additive genetic effects play an important role in controlling body weight variation at the age of 16-24 weeks in Scottish Blackface lambs. IMPLICATIONS: It is expected that using a high-density SNP panel and the joint modeling of both additive and non-additive effects can lead to better estimation and prediction of genetic parameters.