Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 90(3): 035112, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927766

RESUMEN

This article describes a stereoscopic multi-camera calibration method that does not require any optical model. It is based on a measure of the light propagation within the measurement volume only instead of modeling its entire path up to the sensors. The calibration uses simple plane by plane transformations which allow us to directly link pixel coordinates to light rays. The appeal of the proposed method relies on the combination of its simplicity of implementation (it is particularly easy to apply in any sophisticated optical imaging setup), its versatility (it can easily handle index-of-refraction gradients, as well as complex optical arrangements), and its accuracy {we show that the proposed method gives better accuracy than commonly used techniques, based on Tsai's simple pinhole camera model [R. Tsai, J. Rob. Autom. 3, 323 (1987)], while its numerical implementation remains extremely simple}. Based on ideas that have been available in the fluid mechanics community, this method is a compact turn-key algorithm that can be implemented with open-source routines.

2.
AJNR Am J Neuroradiol ; 37(10): 1876-1882, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27197986

RESUMEN

BACKGROUND AND PURPOSE: Idiopathic intracranial hypertension has been associated with dural venous sinus stenosis in some patients, but the hemodynamic environment of the dural venous sinuses has not been quantitatively described. Here, we present the first such computational fluid dynamics model by using patient-specific blood pressure measurements. MATERIALS AND METHODS: Six patients with idiopathic intracranial hypertension and at least 1 stenosis or atresia at the transverse/sigmoid sinus junction underwent MR venography followed by cerebral venography and manometry throughout the dural venous sinuses. Patient-specific computational fluid dynamics models were created by using MR venography anatomy, with venous pressure measurements as boundary conditions. Blood flow and wall shear stress were calculated for each patient. RESULTS: Computational models of the dural venous sinuses were successfully reconstructed in all 6 patients with patient-specific boundary conditions. Three patients demonstrated a pathologic pressure gradient (≥8 mm Hg) across 4 dural venous sinus stenoses. Small sample size precludes statistical comparisons, but average overall flow throughout the dural venous sinuses of patients with pathologic pressure gradients was higher than in those without them (1041.00 ± 506.52 mL/min versus 358.00 ± 190.95 mL/min). Wall shear stress was also higher across stenoses in patients with pathologic pressure gradients (37.66 ± 48.39 Pa versus 7.02 ± 13.60 Pa). CONCLUSIONS: The hemodynamic environment of the dural venous sinuses can be computationally modeled by using patient-specific anatomy and physiologic measurements in patients with idiopathic intracranial hypertension. There was substantially higher blood flow and wall shear stress in patients with pathologic pressure gradients.

3.
Physiol Meas ; 36(11): 2301-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26450643

RESUMEN

This study presents validation of endovascular Doppler velocimetry-based volumetric flow rate measurements conducted in a pulsatile flow loop simulating conditions in both the internal carotid and basilar artery. In vitro models of cerebral vessels, each containing an aneurysm, were fabricated from patient anatomies extracted from 3D rotational angiography. Flow velocity measurements were collected with three different experimental techniques: an endovascular Doppler wire, Particle Image Velocimetry, and a time-resolved ultrasonic flow meter. Womersley's theory of pulsatile flow in a cylindrical vessel was used to compute time-resolved volumetric flow rates from the endovascular Doppler velocity. The volumetric flow rates computed from the Doppler measurements were compared to those from the Particle Image Velocimetry profile measurements, and the direct measurements from the ultrasonic flow meter. The study establishes confidence intervals for any systematic or random errors associated with the wire-derived flow rates as benchmarked to the other two modalities. There is an approximately 10% random error in the Doppler-derived peak and time-averaged flow rates. There is a measurable uniform bias, about 15% too low, in the time-averaged Doppler-derived flow rates. There is also a small proportional bias in the peak systolic Doppler-derived flow rates. Potential sources of error are also discussed.


Asunto(s)
Circulación Cerebrovascular , Procedimientos Endovasculares , Flujometría por Láser-Doppler , Modelos Biológicos , Sesgo , Hemodinámica , Humanos
4.
AJNR Am J Neuroradiol ; 35(1): 143-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23868162

RESUMEN

BACKGROUND AND PURPOSE: Computational fluid dynamics modeling is useful in the study of the hemodynamic environment of cerebral aneurysms, but patient-specific measurements of boundary conditions, such as blood flow velocity and pressure, have not been previously applied to the study of flow-diverting stents. We integrated patient-specific intravascular blood flow velocity and pressure measurements into computational models of aneurysms before and after treatment with flow-diverting stents to determine stent effects on aneurysm hemodynamics. MATERIALS AND METHODS: Blood flow velocity and pressure were measured in peri-aneurysmal locations by use of an intravascular dual-sensor pressure and Doppler velocity guidewire before and after flow-diverting stent treatment of 4 unruptured cerebral aneurysms. These measurements defined inflow and outflow boundary conditions for computational models. Intra-aneurysmal flow rates, wall shear stress, and wall shear stress gradient were calculated. RESULTS: Measurements of inflow velocity and outflow pressure were successful in all 4 patients. Computational models incorporating these measurements demonstrated significant reductions in intra-aneurysmal wall shear stress and wall shear stress gradient and a trend in reduced intra-aneurysmal blood flow. CONCLUSIONS: Integration of intravascular dual-sensor guidewire measurements of blood flow velocity and blood pressure provided patient-specific computational models of cerebral aneurysms. Aneurysm treatment with flow-diverting stents reduces blood flow and hemodynamic shear stress in the aneurysm dome.


Asunto(s)
Prótesis Vascular , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular , Aneurisma Intracraneal/fisiopatología , Aneurisma Intracraneal/cirugía , Modelos Cardiovasculares , Stents , Adulto , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Arterias Cerebrales/cirugía , Simulación por Computador , Análisis de Falla de Equipo , Femenino , Humanos , Aneurisma Intracraneal/diagnóstico , Masculino , Modelos Neurológicos , Falla de Prótesis , Estadística como Asunto , Resultado del Tratamiento
5.
Adv Colloid Interface Sci ; 159(2): 144-59, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20638044

RESUMEN

Droplet impact has been studied for over a hundred years dating back to the pioneering work of Worthington. In fact, much of his ingenuity contributed to modern day high speed photography. Over the past 40 years significant contributions in theoretical, numerical, and experimental work have been made. Droplet impact is a problem of fundamental importance due to the wealth of applications involved, namely, spray coating, spray painting, delivery of agricultural chemicals, spray cooling, inkjet printing, soil erosion due to rain drop impact, and turbine wear. Here we highlight one specific application, spray coating. Although most studies have focused their efforts on low viscosity Newtonian fluids, many industrial applications such as spray coating utilize more viscous and complex rheology liquids. Determining dominant effects and quantifying their behavior for colloidal suspensions and polymer solutions remains a challenge and thus has eluded much effort. In the last decade, it has been shown that introducing polymers to Newtonian solutions inhibits the rebounding of a drop upon impact, Bergeron et al. Furthermore Bartolo et al. concluded that the normal stress component of the elongational viscosity was responsible for the rebounding inhibition of polymer based non-Newtonian solutions. We aim to uncover the drop impact dynamics of highly viscous Newtonian and complex rheology liquids used in pharmaceutical coating processes. The generation and impact of drops of mm and microm size drops of coating liquids and glycerol/water mixtures on tablet surfaces are systematically studied over a range of We approximately O(1-300), Oh approximately O(10(-2)-1), and Re approximately O(1-700). We extend the range of Oh to values above 1, which are not available to previous studies of droplet impacts. Outcomes reveal that splashing and rebounding are completely inhibited and the role of wettability is negligible in the early stages of impact. The maximum spreading diameter of the drop is compared with three models demonstrating reasonable agreement.


Asunto(s)
Industria Farmacéutica , Glicerol/química , Comprimidos Recubiertos/química , Agua/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...