Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 25938-25952, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38740377

RESUMEN

Polymer electrolyte fuel cells are an essential technology for future local emission-free mobility. One of the critical challenges for thriving commercialization is water management in the cells. We propose small- and wide-angle X-ray scattering as a suitable diagnostic tool to quantify the liquid saturation in the catalyst layer and determine the hydration of the ion-conducting membrane in real operating conditions. The challenges that may occur in operando data collection are described in detail─separation of the anode and cathode, cell alignment to the beam, X-ray radiation damage, and the possibility of membrane swelling. A synergistic development of experimental setup, data acquisition, and data interpretation circumvents the major challenges and leads to practical and reliable insights.

2.
ACS Appl Mater Interfaces ; 15(22): 26538-26553, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229747

RESUMEN

The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions. This approach is validated using ex situ wetting experiments, which aid the study of the transient saturation of a CL in a flow cell configuration in situ. The azimuthally integrated scattering data are fitted using 3D morphology models of the CL under dry conditions. Different wetting scenarios are realized in silico, and the corresponding SAXS data are numerically simulated by a direct 3D Fourier transformation. The simulated SAXS profiles of the different wetting scenarios are used to interpret the measured SAXS data which allows the derivation of the most probable wetting mechanism within a flow cell electrode.

3.
Dalton Trans ; 51(1): 85-94, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34846402

RESUMEN

The synthesis of a series of trans-heteroleptic paddlewheel diruthenium(II,II) complexes with various hydroxy-substituted benzoate ligands, [Ru2((OH)xPhCO2)2(2,6-(CF3)2PhCO2)2(THF)2] ([RuII,II2]) as tetrahydrofuran (THF) adducts is reported, where (OH)xPhCO2- stands for o-hydroxybenzoate (o-OH), m-hydroxybenzoate (m-OH), p-hydroxybenzoate (p-OH), 2,3-dihydroxybenzoate (2,3-(OH)2), 2,4-dihydroxybenzoate (2,4-(OH)2), 2,5-dihydroxybenzoate (2,5-(OH)2), 2,6-dihydroxybenzoate (2,6-(OH)2), or 3,4-dihydroxybenzoate (3,4-(OH)2), and 2,6-(CF3)2PhCO2- represents 2,6-bis(trifluoromethyl)benzoate. In this heteroleptic series, the redox potential (E1/2) of the [RuII,II2]/[RuII,III2]+ couple in THF varies over a wide range, from -18 mV (vs. Ag/Ag+) for p-OH to 432 mV for 2,6-(OH)2. The redox properties are linearly dependent on the acidity (pKa) of the OH-substituted benzoic acids, but do not depend on the number of ortho-substituted hydroxy (o-OH) groups. This indicates that the steric effect of o-substituents is irrelevant in the case of hydroxyl groups, owing to the formation of intramolecular hydrogen bonds between the o-OH group and carboxylate oxygens. The value of the Hammett constant σo for the o-OH substituent was determined to be 0.667, indicating a strongly electron-withdrawing character, contrary to the expectation of electron-donating character for an OH group. The redox properties of the compounds were well explained in a framework of Hammett analyses and were also consistent with their HOMO energy levels evaluated by DFT calculations based on the atomic coordinates. The unexpected electron-withdrawing character of the o-OH groups could be attributed to the direct effect of intramolecular hydrogen bonding on the charge density on the carboxylate oxygen.

4.
J Phys Chem Lett ; 11(8): 2830-2837, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32200632

RESUMEN

Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle X-ray scattering, optical extinction spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties, plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA