Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 586(7827): 133-138, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32728212

RESUMEN

Somatic mutations in p53, which inactivate the tumour-suppressor function of p53 and often confer oncogenic gain-of-function properties, are very common in cancer1,2. Here we studied the effects of hotspot gain-of-function mutations in Trp53 (the gene that encodes p53 in mice) in mouse models of WNT-driven intestinal cancer caused by Csnk1a1 deletion3,4 or ApcMin mutation5. Cancer in these models is known to be facilitated by loss of p533,6. We found that mutant versions of p53 had contrasting effects in different segments of the gut: in the distal gut, mutant p53 had the expected oncogenic effect; however, in the proximal gut and in tumour organoids it had a pronounced tumour-suppressive effect. In the tumour-suppressive mode, mutant p53 eliminated dysplasia and tumorigenesis in Csnk1a1-deficient and ApcMin/+ mice, and promoted normal growth and differentiation of tumour organoids derived from these mice. In these settings, mutant p53 was more effective than wild-type p53 at inhibiting tumour formation. Mechanistically, the tumour-suppressive effects of mutant p53 were driven by disruption of the WNT pathway, through preventing the binding of TCF4 to chromatin. Notably, this tumour-suppressive effect was completely abolished by the gut microbiome. Moreover, a single metabolite derived from the gut microbiota-gallic acid-could reproduce the entire effect of the microbiome. Supplementing gut-sterilized p53-mutant mice and p53-mutant organoids with gallic acid reinstated the TCF4-chromatin interaction and the hyperactivation of WNT, thus conferring a malignant phenotype to the organoids and throughout the gut. Our study demonstrates the substantial plasticity of a cancer mutation and highlights the role of the microenvironment in determining its functional outcome.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Microbioma Gastrointestinal/genética , Genes Supresores de Tumor , Mutación , Oncogenes/genética , Proteína p53 Supresora de Tumor/genética , Animales , Antibacterianos/farmacología , Carcinogénesis/efectos de los fármacos , Femenino , Ácido Gálico/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Organoides/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
2.
Cell ; 175(1): 171-185.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146162

RESUMEN

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2-/-;Flt3ITD AML mouse models and in several patient-derived AML xenograft models, supporting their potential efficacy in curing human leukemia.


Asunto(s)
Caseína Quinasa Ialfa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Caseína Quinasa Ialfa/fisiología , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/fisiología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/fisiología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos/genética , Hematopoyesis , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteína p53 Supresora de Tumor/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 114(38): E8035-E8044, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28878021

RESUMEN

Casein kinase 1α (CK1α), a component of the ß-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ERT2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by ß-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ERT2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Queratinocitos/metabolismo , Pigmentación de la Piel , Quemadura Solar/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Quinasa de la Caseína I/antagonistas & inhibidores , Quinasa de la Caseína I/genética , Epidermis/metabolismo , Epidermis/patología , Queratinocitos/patología , Melaninas/biosíntesis , Melaninas/genética , Melanocitos/metabolismo , Melanocitos/patología , Ratones , Ratones Noqueados , Quemadura Solar/genética , Quemadura Solar/patología , Proteína p53 Supresora de Tumor/genética , beta Catenina/genética , beta Catenina/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(6): E702-11, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469832

RESUMEN

ß-TrCP, the substrate recognition subunit of SCF-type ubiquitin ligases, is ubiquitously expressed from two distinct paralogs, targeting for degradation many regulatory proteins, among which is the NF-κB inhibitor IκB. To appreciate tissue-specific roles of ß-TrCP, we studied the consequences of inducible ablation of three or all four alleles of the E3 in the mouse gut. The ablation resulted in mucositis, a destructive gut mucosal inflammation, which is a common complication of different cancer therapies and represents a major obstacle to successful chemoradiation therapy. We identified epithelial-derived IL-1ß as the culprit of mucositis onset, inducing mucosal barrier breach. Surprisingly, epithelial IL-1ß is induced by DNA damage via an NF-κB-independent mechanism. Tissue damage caused by gut barrier disruption is exacerbated in the absence of NF-κB, with failure to express the endogenous IL-1ß receptor antagonist IL-1Ra upon four-allele loss. Antibody neutralization of IL-1ß prevents epithelial tight junction dysfunction and alleviates mucositis in ß-TrCP-deficient mice. IL-1ß antagonists should thus be considered for prevention and treatment of severe morbidity associated with mucositis.


Asunto(s)
Daño del ADN , Interleucina-1beta/fisiología , Mucositis/fisiopatología , Animales , Secuencia de Bases , Cartilla de ADN , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitosis , FN-kappa B/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo
5.
Cancer Cell ; 24(2): 242-56, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23890787

RESUMEN

Senescence, perceived as a cancer barrier, is paradoxically associated with inflammation, which promotes tumorigenesis. Here, we characterize a distinct low-grade inflammatory process in stressed epithelium that is related to para-inflammation; this process either represses or promotes tumorigenesis, depending on p53 activity. Csnk1a1 (CKIα) downregulation induces a senescence-associated inflammatory response (SIR) with growth arrest in colorectal tumors, which loses its growth control capacity in the absence of p53 and instead, accelerates growth and invasiveness. Corresponding processes occur in CKIα-deleted intestinal organoids, assuming tumorigenic transformation properties ex vivo, upon p53 loss. Treatment of organoids and mice with anti-inflammatory agents suppresses the SIR and prevents p53-deficient organoid transformation and mouse carcinogenesis. SIR/para-inflammation suppression may therefore constitute a key mechanism in the anticarcinogenic effects of nonsteroidal anti-inflammatory drugs.


Asunto(s)
Transformación Celular Neoplásica/patología , Inflamación/patología , Neoplasias/patología , Animales , Antiinflamatorios no Esteroideos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Senescencia Celular/fisiología , Inflamación/genética , Ratones , Ratones Noqueados , Neoplasias/genética
6.
Nature ; 470(7334): 409-13, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21331045

RESUMEN

The mature gut renews continuously and rapidly throughout adult life, often in a damage-inflicting micro-environment. The major driving force for self-renewal of the intestinal epithelium is the Wnt-mediated signalling pathway, and Wnt signalling is frequently hyperactivated in colorectal cancer. Here we show that casein kinase Iα (CKIα), a component of the ß-catenin-destruction complex, is a critical regulator of the Wnt signalling pathway. Inducing the ablation of Csnk1a1 (the gene encoding CKIα) in the gut triggers massive Wnt activation, surprisingly without causing tumorigenesis. CKIα-deficient epithelium shows many of the features of human colorectal tumours in addition to Wnt activation, in particular the induction of the DNA damage response and cellular senescence, both of which are thought to provide a barrier against malignant transformation. The epithelial DNA damage response in mice is accompanied by substantial activation of p53, suggesting that the p53 pathway may counteract the pro-tumorigenic effects of Wnt hyperactivation. Notably, the transition from benign adenomas to invasive colorectal cancer in humans is typically linked to p53 inactivation, underscoring the importance of p53 as a safeguard against malignant progression; however, the mechanism of p53-mediated tumour suppression is unknown. We show that the maintenance of intestinal homeostasis in CKIα-deficient gut requires p53-mediated growth control, because the combined ablation of Csnk1a1 and either p53 or its target gene p21 (also known as Waf1, Cip1, Sdi1 and Cdkn1a) triggered high-grade dysplasia with extensive proliferation. Unexpectedly, these ablations also induced non-proliferating cells to invade the villous lamina propria rapidly, producing invasive carcinomas throughout the small bowel. Furthermore, in p53-deficient gut, loss of heterozygosity of the gene encoding CKIα caused a highly invasive carcinoma, indicating that CKIα functions as a tumour suppressor when p53 is inactivated. We identified a set of genes (the p53-suppressed invasiveness signature, PSIS) that is activated by the loss of both p53 and CKIα and which probably accounts for the brisk induction of invasiveness. PSIS transcription and tumour invasion were suppressed by p21, independently of cell cycle control. Restraining tissue invasion through suppressing PSIS expression is thus a novel tumour-suppressor function of wild-type p53.


Asunto(s)
Caseína Quinasa Ialfa/deficiencia , Neoplasias Colorrectales/patología , Proteína p53 Supresora de Tumor/metabolismo , Adenoma/enzimología , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Animales , Caseína Quinasa Ialfa/genética , Caseína Quinasa Ialfa/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Senescencia Celular , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Progresión de la Enfermedad , Femenino , Fibroblastos , Genes APC , Genes Supresores de Tumor , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Pérdida de Heterocigocidad , Masculino , Ratones , Ratones Noqueados , Invasividad Neoplásica/patología , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
7.
Nat Immunol ; 12(3): 239-46, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21278735

RESUMEN

Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Δgut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMß, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Δgut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELMß expression in vivo; miR-375-deficient mice had significantly less intestinal RELMß, which possibly explains the greater susceptibility of Dicer1(Δgut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.


Asunto(s)
Inmunidad Mucosa/inmunología , MicroARNs/inmunología , Linfocitos T/inmunología , Animales , Comunicación Celular , Epitelio/inmunología , Tracto Gastrointestinal/inmunología , Células HT29 , Humanos , Inmunohistoquímica , Interleucina-13/metabolismo , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
8.
EMBO J ; 29(19): 3236-48, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20736927

RESUMEN

Although the transcriptional regulatory events triggered by Oct-3/4 are well documented, understanding the proteomic networks that mediate the diverse functions of this POU domain homeobox protein remains a major challenge. Here, we present genetic and biochemical studies that suggest an unexpected novel strategy for Oct-3/4-dependent regulation of embryogenesis and cell lineage determination. Our data suggest that Oct-3/4 specifically interacts with nuclear ß-catenin and facilitates its proteasomal degradation, resulting in the maintenance of an undifferentiated, early embryonic phenotype both in Xenopus embryos and embryonic stem (ES) cells. Our data also show that Oct-3/4-mediated control of ß-catenin stability has an important function in regulating ES cell motility. Down-regulation of Oct-3/4 increases ß-catenin protein levels, enhancing Wnt signalling and initiating invasive cellular activity characteristic of epithelial-mesenchymal transition. Our data suggest a novel mode of regulation by which a delicate balance between ß-catenin, Tcf3 and Oct-3/4 regulates maintenance of stem cell identity. Altering the balance between these proteins can direct cell fate decisions and differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo Embrionario/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Línea Celular , Perfilación de la Expresión Génica , Humanos , Inmunoprecipitación , Análisis por Micromatrices , Oligonucleótidos/genética , Células Madre/metabolismo , Xenopus
9.
PLoS Pathog ; 6(1): e1000743, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20126447

RESUMEN

The complex host-pathogen interplay involves the recognition of the pathogen by the host's innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kappaB, followed by inflammation and eradication of the intruders. In response, some pathogens, including enteropathogenic Escherichia coli (EPEC), acquired means of blocking NF-kappaB activation. We show that inhibition of NF-kappaB activation by EPEC involves the injection of NleE into the host cell. Importantly, we show that NleE inhibits NF-kappaB activation by preventing activation of IKKbeta and consequently the degradation of the NF-kappaB inhibitor, IkappaB. This NleE activity is enhanced by, but is not dependent on, a second injected effector, NleB. In conclusion, this study describes two effectors, NleB and NleE, with no similarity to other known proteins, used by pathogens to manipulate NF-kappaB signaling pathways.


Asunto(s)
Activación Enzimática/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factores de Virulencia/metabolismo , Western Blotting , Escherichia coli Enteropatógena/metabolismo , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Transporte de Proteínas/fisiología , Transfección
10.
Nat Cell Biol ; 8(12): 1327-36, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17128265

RESUMEN

The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-kappaB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IkappaBalpha degradation and activation of the NF-kappaB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IkappaB accumulates in the cytoplasm preventing NF-kappaB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-kappaB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation.


Asunto(s)
Polaridad Celular , Colon/citología , Enterocitos/citología , Homeostasis , Transducción de Señal , Receptor Toll-Like 9/metabolismo , Animales , Células CACO-2 , Cloroquina/farmacología , Colon/efectos de los fármacos , Colon/patología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Ligandos , Ratones , Ratones Endogámicos C57BL , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/química
11.
J Biol Chem ; 277(37): 34036-41, 2002 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-12119285

RESUMEN

CYP27-overexpressed transgenic mice were generated with the use of a human full-length CYP27 coding region cloned into a ubiquitous expression vector. Positive transgenic mice were identified by tail DNA genotyping and high fecal 27-hydroxycholesterol content. The levels of 27-hydroxycholesterol were found to be 3-5 times higher in the circulation and the tissues of the overexpressed mice when compared with littermate controls. There were no gross morphological differences between the overexpressed mice and their controls. Total cholesterol and triglyceride levels were not affected by overexpression of CYP27. Serum lathosterol was also normal, suggesting a normal rate of cholesterol synthesis. Serum levels of 7alpha-hydroxycholesterol were unaffected, suggesting a normal rate of bile acid formation in the pathway involving cholesterol 7alpha-hydroxylase. Biliary bile acid composition was slightly affected by CYP27 overexpression in female but not in male mice. Fecal levels of neutral steroids were slightly but significantly increased in overexpressor female mice but not in male mice. Levels of 24-hydroxycholesterol in the circulation were significantly reduced in the overexpressed mice, probably as a consequence of a recently described catabolic pathway involving CYP27. Combined with the results of our previous work on mice with a disruption of the CYP27 gene, the present results suggest that the levels of 27-hydroxycholesterol are not of critical importance for cholesterol homeostasis in mice.


Asunto(s)
Colesterol/metabolismo , Esteroide Hidroxilasas/fisiología , Animales , Bilis/química , Ácidos y Sales Biliares/análisis , Colestanotriol 26-Monooxigenasa , Grasas de la Dieta/administración & dosificación , Heces/química , Femenino , Homeostasis , Humanos , Lípidos/sangre , Lipoproteínas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Esteroide Hidroxilasas/genética
12.
Genes Dev ; 16(9): 1066-76, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12000790

RESUMEN

The Wnt pathway controls numerous developmental processes via the beta-catenin-TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of beta-catenin in the nucleus, often leading to cancer. Normally, cytoplasmic beta-catenin associates with APC and axin and is continuously phosphorylated by GSK-3beta, marking it for proteasomal degradation. Wnt signaling is considered to prevent GSK-3beta from phosphorylating beta-catenin, thus causing its stabilization. However, the Wnt mechanism of action has not been resolved. Here we study the regulation of beta-catenin phosphorylation and degradation by the Wnt pathway. Using mass spectrometry and phosphopeptide-specific antibodies, we show that a complex of axin and casein kinase I (CKI) induces beta-catenin phosphorylation at a single site: serine 45 (S45). Immunopurified axin and recombinant CKI phosphorylate beta-catenin in vitro at S45; CKI inhibition suppresses this phosphorylation in vivo. CKI phosphorylation creates a priming site for GSK-3beta and is both necessary and sufficient to initiate the beta-catenin phosphorylation-degradation cascade. Wnt3A signaling and Dvl overexpression suppress S45 phosphorylation, thereby precluding the initiation of the cascade. Thus, a single, CKI-dependent phosphorylation event serves as a molecular switch for the Wnt pathway.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Represoras , Serina/metabolismo , Transactivadores , Proteínas Adaptadoras Transductoras de Señales , Proteína Axina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Caseína Quinasas , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas Dishevelled , Glucógeno Sintasa Quinasa 3 , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas/inmunología , Transducción de Señal , Proteínas Wnt , Proteína Wnt3 , Proteína Wnt3A , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA