Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Saudi Pharm J ; 30(11): 1665-1671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36465840

RESUMEN

5-fluorouracil (5FU) is widely used to treat colorectal cancer (CC) and its main mechanisms of anticancer action are through generation of ROS which often result in inflammation. Here, we test the effect of Lycopene against 5FU in Caco2 cell line. Caco2 cells were exposed to 3 µg/ml of 5FU alone or with 60, 90, 120 µg/ml of lycopene. This was followed by assessment of cytotoxicity, oxidative stress, and gene expression of inflammatory genes. Our findings showed that Lycopene and 5FU co-exposure induced dose-dependent cytotoxic effect without compromising the membrane integrity based on the LDH assay. Lycopene also significantly enhanced 5FU-induced SOD activity and GSH level compared to control for all mixture concentrations (p < 0.01). Lycopene alone and combination with 5FU-induced expression of IL-1ß, TNF-α, and IL-6. Furthermore, IFN-γ expression was significantly enhanced by only mixture of lycopene (90 µg/ml) and 5FU (p < 0.05). In conclusion, Lycopene supplementation with 5FU therapy resulted in improvement in antioxidant parameters such as catalase and GSH levels giving the cell capacity to cope with 5FU-mediated oxidative stress. Lycopene also enhanced IFN-γ expression in the presence of 5FU, which may activate antitumor effects further enhancing the cancer killing effect of 5FU.

2.
Saudi J Biol Sci ; 29(9): 103392, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35957702

RESUMEN

Colon cancer (CC) is among the most frequent human cancers. Although, there is improvement in diagnostic techniques and existing treatment possibilities. Still, there is an unmet need for a novel treatment regimen that will improve the patient's quality of life. Here, the role of lycopene as an adjuvant therapy with 5-fluorouracil (5-FU) was explored in Caco2 colon cancer cells. Cells were exposed to a dose (3 µg/ml) of 5-FU and three doses (60, 90, 120 µg/ml) of lycopene either alone or as a mixture with 5-FU. Cytotoxicity, genotoxicity, oxidative stress, gene expression, and apoptotic parameters were investigated in this study. Findings showed that 5-FU or lycopene alone induced a dose-dependent increase in cytotoxicity which was slightly reduced in lycopene mixtures. Apoptotic assays showed that 5-FU induced a significant level of apoptosis but not necrosis. However, a lycopene mixture with 5-FU enhanced 5-FU triggered apoptosis and promoted necrosis. The mixtures were also shown to suppress mitochondrial membrane potential while gene expression analyses showed the induction of Bax expression upon exposure to mix 90 exhibited the highest Bax to Bcl-2 ratio and caspase 3 and 9 gene expression. Furthermore, the mixture treatment also inhibited cell migration in the wound healing assay compared to 5-FU alone. In conclusion, lycopene was found to sensitize Caco 2 cell lines to 5-FU treatment by inducing the expression of apoptotic genes. This, coupled with lycopene suppression of cytotoxicity and cell migration, indicates lycopene may be a promising candidate for adjuvant therapy involving 5-FU in CC.

3.
Biomed Res Int ; 2022: 8495159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872848

RESUMEN

Cyclophosphamide (CP) alkylates DNA and RNA produce crosslinks that cause gene expression and protein synthesis inhibition to exert its anticancer effect. However, adverse effects of CP have restricted the CP application in cancer treatment. We investigate coenzyme-Q10 (Q10) and piperine (P) protective role on CP oxidant and inflammatory effect. HuH-7 cells were exposed to varying concentrations and combinations of Q10, P, and CP and evaluated intracellular ROS generation as well as inflammatory responses upon exposure. Our results showed Q10 and/or P suppressed both basal and CP-induced ROS generation without upsetting the balance in activities of SOD, catalase, and GSH levels. Analysis of proinflammatory cytokine gene expression showed that CP treatment alone only induced expression of IL-6ß. However, coexposure of the cells to both Q10 and CP caused significant suppression of basal Cox-2 and TNF-α gene expression, while coexposure of the cells to CP and P with Co-Q10 suppressed basal IL-1ß gene expression. Q10 also suppressed CP-induced expression of Cox-1. P and CP suppressed basal expression of IL-6ß and IL-12ß, while P and Q10 suppressed CP-induced IL1-α gene expression. Taken together, both Q10 and P seem to be inhibiting NFκß pathway to suppress CP-mediated inflammation. In conclusion, Q10 and/or P induced suppression of ROS generation mediated by CP and also suppressed CP-induced inflammation by inhibiting expression of specific inflammatory cytokine.


Asunto(s)
Antioxidantes , Ubiquinona , Alcaloides , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Benzodioxoles , Ciclofosfamida/efectos adversos , Citocinas/farmacología , Humanos , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Piperidinas , Alcamidas Poliinsaturadas , Especies Reactivas de Oxígeno , Ubiquinona/farmacología
4.
Front Pharmacol ; 11: 619024, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33456444

RESUMEN

Alzheimer's disease (AD) is a progressive cortex and hippocampal neurodegenerative disease which ultimately causes cognitively impaired decline in patients. The AD pathogen is a very complex process, including aggregation of Aß (ß-amyloid peptides), phosphorylation of tau-proteins, and chronic inflammation. Exactly, resveratrol, a polyphenol present in red wine, and many plants are indicated to show the neuroprotective effect on mechanisms mostly above. Resveratrol plays an important role in promotion of non-amyloidogenic cleavage of the amyloid precursor protein. It also enhances the clearance of amyloid beta-peptides and reduces the damage of neurons. Most experimental research on AD and resveratrol has been performed in many species, both in vitro and in vivo, during the last few years. Nevertheless, resveratrol's effects are restricted by its bioavailability in the reservoir. Therefore, scientists have tried to improve its efficiency by using different methods. This review focuses on recent work done on the cell and animal cultures and also focuses on the neuroprotective molecular mechanisms of resveratrol. It also discusses about the therapeutic potential onto the treatment of AD.

5.
Biosci Rep ; 38(1)2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29298881

RESUMEN

Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand, pathway analysis on the down-regulated genes revealed significant enrichment in pathways related to cell cycle regulation. Based on these data, we assessed the effect of pharmacological inhibition of FAK signaling using PF-573228, PF-562271, and InsR/IGF-1R using NVP-AEW541 and GSK-1904529A on adipocyte differentiation. hMSCs exposed to FAK or IGF-1R/InsR inhibitors exhibited fewer adipocyte formation (27-58% inhibition, P<0005). Concordantly, the expression of adipocyte-specific genes AP2, AdipoQ, and CEBPα was significantly reduced. On the other hand, we did not detect significant effects on cell viability as a result of FAK or IGF-1R/InsR inhibition. Our data identified FAK and insulin signaling as important intracellular signaling pathways relevant to bone marrow adipogenesis.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , Diferenciación Celular/genética , Osteogénesis/genética , Adipocitos/citología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...