Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
BMC Infect Dis ; 15: 449, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26497222

RESUMEN

BACKGROUND: The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10-15 %, and neurological sequelae in 30-50 % of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. METHODS: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. RESULTS: The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. CONCLUSIONS: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion.


Asunto(s)
ADN Bacteriano/análisis , Infecciones por Escherichia coli/diagnóstico , Escherichia coli/genética , Meningitis/diagnóstico , Animales , Antibacterianos/farmacología , Células CACO-2 , Línea Celular , Electroforesis en Gel de Campo Pulsado , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Genotipo , Humanos , Intubación Gastrointestinal , Meningitis/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Ratas , Serotipificación , Factores de Virulencia/genética
2.
Appl Environ Microbiol ; 79(16): 4951-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23770897

RESUMEN

The genus Arcobacter is composed of 17 species which have been isolated from various sources. Of particular interest are A. butzleri, A. cryaerophilus, and A. skirrowii, as these have been associated with human cases of diarrhea, the probable transmission routes being through the ingestion of contaminated drinking water and food. To date, only limited studies of virulence traits in this genus have been undertaken. The present study used 60 Arcobacter strains isolated from different sources, representing 16 of the 17 species of the genus, to investigate their ability to adhere to and invade the human intestinal cell line Caco-2. In addition, the presence of five putative virulence genes (ciaB, cadF, cj1349, hecA, and irgA) was screened for in these strains by PCR. All Arcobacter species except A. bivalviorum and Arcobacter sp. strain W63 adhered to Caco-2 cells, and most species (10/16) were invasive. The most invasive species were A. skirrowii, A. cryaerophilus, A. butzleri, and A. defluvii. All invasive strains were positive for ciaB (encoding a putative invasion protein). Other putative virulence genes were present in other species, i.e., A. butzleri (cadF, cj1349, irgA, and hecA), A. trophiarum (cj1349), A. ellisii (cj1349), and A. defluvii (irgA). No virulence genes were detected in strains which showed little or no invasion of Caco-2 cells. These results indicate that many Arcobacter species are potential pathogens of humans and animals.


Asunto(s)
Arcobacter/genética , Arcobacter/patogenicidad , Adhesión Bacteriana , Proteínas Bacterianas/genética , Arcobacter/clasificación , Arcobacter/fisiología , Proteínas Bacterianas/metabolismo , Células CACO-2 , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Especificidad de la Especie , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA