Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982391

RESUMEN

In euryhaline teleost black porgy, Acanthopagrus schlegelii, the glucocorticoid receptor (gr), growth hormone receptor (ghr), prolactin (prl)-receptor (prlr), and sodium-potassium ATPase alpha subunit (α-nka) play essential physiological roles in the osmoregulatory organs, including the gill, kidney, and intestine, during osmotic stress. The present study aimed to investigate the impact of pituitary hormones and hormone receptors in the osmoregulatory organs during the transfer from freshwater (FW) to 4 ppt and seawater (SW) and vice versa in black porgy. Quantitative real-time PCR (Q-PCR) was carried out to analyze the transcript levels during salinity and osmoregulatory stress. Increased salinity resulted in decreased transcripts of prl in the pituitary, α-nka and prlr in the gill, and α-nka and prlr in the kidney. Increased salinity caused the increased transcripts of gr in the gill and α-nka in the intestine. Decreased salinity resulted in increased pituitary prl, and increases in α-nka and prlr in the gill, and α-nka, prlr, and ghr in the kidney. Taken together, the present results highlight the involvement of prl, prlr, gh, and ghr in the osmoregulation and osmotic stress in the osmoregulatory organs (gill, intestine, and kidney). Pituitary prl, and gill and intestine prlr are consistently downregulated during the increased salinity stress and vice versa. It is suggested that prl plays a more significant role in osmoregulation than gh in the euryhaline black porgy. Furthermore, the present results highlighted that the gill gr transcript's role was solely to balance the homeostasis in the black porgy during salinity stress.


Asunto(s)
Receptores de Glucocorticoides , Receptores de Somatotropina , Animales , Receptores de Somatotropina/metabolismo , Presión Osmótica , Receptores de Glucocorticoides/metabolismo , Osmorregulación/genética , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo , Salinidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Branquias/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362208

RESUMEN

The neurohypophysial hormone arginine vasotocin (avt) and its receptor (avtr) regulates ions in the osmoregulatory organs of euryhaline black porgy (Acanthopagrus schlegelii). The localization of avt and avtr transcripts in the osmoregulatory organs has yet to be demonstrated. Thus, in the present study, we performed an in situ hybridization analysis to determine the localization of avt and avtr in the gills, kidneys, and intestines of the black porgy. The avt and avtr transcripts were identified in the filament and lamellae region of the gills in the black porgy. However, the basal membrane of the filament contained more avt and avtr transcripts. Fluorescence double tagging analysis revealed that avt and avtr mRNAs were partially co-localized with α-Nka-ir cells in the gill filament. The proximal tubules, distal tubules, and collecting duct of the kidney all had positive hybridization signals for the avt and avtr transcripts. Unlike the α-Nka immunoreactive cells, the avt and avtr transcripts were found on the basolateral surface of the distal convoluted tubule and in the entire cells of the proximal convoluted tubules of the black porgy kidney. In the intestine, the avt and avtr transcripts were found in the basolateral membrane of the enterocytes. Collectively, this study provides a summary of evidence suggesting that the neuropeptides avt and avtr with α-Nka-ir cells may have functions in the gills, kidneys, and intestines via ionocytes.


Asunto(s)
Neuropéptidos , Perciformes , Animales , Vasotocina , Branquias , Riñón , Intestinos
3.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35269757

RESUMEN

We investigated the developmental expression and localization of sf-1 and dax-1 transcripts in the brain of the juvenile orange-spotted grouper in response to steroidogenic enzyme gene at various developmental ages in relation to gonadal sex differentiation. The sf-1 transcripts were significantly higher from 110-dah (day after hatching) and gradually increased up to 150-dah. The dax-1 mRNA, on the other hand, showed a decreased expression during this period, in contrast to sf-1 expression. At the same time, the early brain had increased levels of steroidogenic gene (star). sf-1 and star hybridization signals were found to be increased in the ventromedial hypothalamus at 110-dah; however, dax-1 mRNA signals decreased in the early brain toward 150-dah. Furthermore, the exogenous estradiol upregulated star and sf-1 transcripts in the early brain of the grouper. These findings suggest that sf-1 and dax-1 may have an antagonistic expression pattern in the early brain during gonadal sex differentiation. Increased expression of steroidogenic gene together with sf-1 during gonadal differentiation strongly suggests that sf-1 may play an important role in the juvenile grouper brain steroidogenesis and brain development.


Asunto(s)
Lubina , Animales , Lubina/genética , Lubina/metabolismo , Encéfalo/metabolismo , Gónadas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Diferenciación Sexual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...