Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Data Brief ; 55: 110710, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081493

RESUMEN

Tetanops myopaeformis, the sugar beet root maggot (SBRM), is a devastating insect pathogen of sugar beet, one of only two plants in the world from which sugar is widely produced, accounting for 55% of U.S. sugar and 35% of global raw sugar with an annual farm value of $3 billion in the United States. T. myopaeformis is capable of causing total crop failure, making its study important. The previously released SBRM genome, TmSBRM_v1.0, has been generated from the de novo assembled draft genome sequence of T. myopaeformis isolated that was isolated from field-grown B. vulgaris in North Dakota, USA. The annotation of the T. myopaeformis is presented here. The annotated T. myopaeformis genome should be useful in understanding the biology of this insect and the development of new control strategies for this pathogen, relationship to model genetic organisms like Drosophila melanogaster and aid in agronomic improvement of sugar beet for stakeholders while also providing information on the relationship between the SBRM and climate change.

2.
Plant Physiol Biochem ; 213: 108755, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875777

RESUMEN

Pathogen-secreted polygalacturonases (PGs) alter plant cell wall structure by cleaving the α-(1 â†’ 4) linkages between D-galacturonic acid residues in homogalacturonan (HG), macerating the cell wall, facilitating infection. Plant PG inhibiting proteins (PGIPs) disengage pathogen PGs, impairing infection. The soybean cyst nematode, Heterodera glycines, obligate root parasite produces secretions, generating a multinucleate nurse cell called a syncytium, a byproduct of the merged cytoplasm of 200-250 root cells, occurring through cell wall maceration. The common cytoplasmic pool, surrounded by an intact plasma membrane, provides a source from which H. glycines derives nourishment but without killing the parasitized cell during a susceptible reaction. The syncytium is also the site of a naturally-occurring defense response that happens in specific G. max genotypes. Transcriptomic analyses of RNA isolated from the syncytium undergoing the process of defense have identified that one of the 11 G. max PGIPs, GmPGIP11, is expressed during defense. Functional transgenic analyses show roots undergoing GmPGIP11 overexpression (OE) experience an increase in its relative transcript abundance (RTA) as compared to the ribosomal protein 21 (GmRPS21) control, leading to a decrease in H. glycines parasitism as compared to the overexpression control. The GmPGIP11 undergoing RNAi experiences a decrease in its RTA as compared to the GmRPS21 control with transgenic roots experiencing an increase in H. glycines parasitism as compared to the RNAi control. Pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) components are shown to influence GmPGIP11 expression while numerous agricultural crops are shown to have homologs.


Asunto(s)
Glycine max , Proteínas de Plantas , Raíces de Plantas , Tylenchoidea , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Glycine max/parasitología , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Animales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/parasitología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/parasitología , Interacciones Huésped-Parásitos
3.
Data Brief ; 54: 110298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544912

RESUMEN

The sugar beet root maggot (SBRM), Tetanops myopaeformis (von Röder), is a devastating insect pathogen of sugar beet (SB), Beta vulgaris, ssp vulgaris (B. vulgaris), an important food crop, while also being one of only two plants globally from which sugar is widely produced, and accounting for 35% of global raw sugar with an annual farm value of $3 billion in the United States alone. SBRM is the most devastating pathogen of sugar beet in North America. The limited natural resistance of B. vulgaris necessitates an understanding of the SBRM genome to facilitate generating knowledge of its basic biology, including the interaction between the pathogen and its host(s). Presented is the de novo assembled draft genome sequence of T. myopaeformis isolated from field-grown B. vulgaris in North Dakota, USA. The SBRM genome sequence TmSBRM_v1.0 will also be valuable for molecular genetic marker development to facilitate host resistance gene identification and knowledge, including SB polygalacturonase inhibiting protein (PGIP), and development of new control strategies for this pathogen, relationship to model genetic organisms like Drosophila melanogaster and aid in agronomic improvement of sugar beet for stakeholders while also providing information on the relationship between the SBRM and climate change.

4.
Data Brief ; 52: 109831, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38076472

RESUMEN

The plant cell wall structure can be altered by pathogen-secreted polygalacturonases (PGs) that cleave the α-(1→4) linkages occurring between D-galacturonic acid residues in homogalacturonan. The activity of the PGs leads to cell wall maceration, facilitating infection. Plant PG inhibiting proteins (PGIPs) impede pathogen PGs, impairing infection and leading to the ability of the plant to resist infection. Analyses show the Glycine max PGIP11 (GmPGIP11) is expressed within a root cell that is parasitized by the pathogenic nematode Heterodera glycines, the soybean cyst nematode (SCN), but while undergoing a defence response that leads to its demise. Transgenic experiments show GmPGIP11 overexpression leads to a successful defence response, while the overexpression of a related G. max PGIP, GmPGIP1 does not, indicating a level of specificity. The analyses presented here have identified PGIPs from 51 additional studied proteomes, many of agricultural importance. The analyses include the computational identification of signal peptides and their cleavage sites, O-, and N-glycosylation. Artificial intelligence analyses determine the location where the processed protein localize. The identified PGIPs are presented as a tool base from which functional transgenics can be performed to determine whether they may have a role in plant-pathogen interactions.

5.
Transgenic Res ; 31(4-5): 457-487, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35763120

RESUMEN

Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.


Asunto(s)
Tylenchoidea , Animales , Gossypium/genética , Proteína Quinasa 3 Activada por Mitógenos , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/parasitología , Glycine max/parasitología , Tylenchoidea/genética
6.
Plant Physiol Biochem ; 185: 198-220, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35704989

RESUMEN

Expression of the central circadian oscillator components CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), TIMING OF CAB1 (TOC1), GIGANTEA (GI), and CONSTANS (CO) occurs in Glycine max root cells (syncytia) parasitized by the nematode Heterodera glycines while undergoing resistance, indicating a defense role. GmCCA1-1 relative transcript abundance (RTA) in roots experiencing overexpression (OE) or RNA interference (RNAi) is characterized by rhythmic oscillations, compared to a ribosomal protein gene (GmRPS21) control. A GmCCA1-1 RTA change, advancing by 12 h, exists in H. glycines-infected as compared to uninfected controls in wild-type, H. glycines-resistant, G. max[Peking/PI 548402]. The G. max[Peking/PI 548402] transgenic controls exhibit the RTA change by 4 h post infection (hpi), not consistently occurring in the H. glycines-susceptible G. max[Williams 82/PI 518671] until 56 hpi. GmCCA1-1 expression is observed to be reduced in H. glycines-infected GmCCA1-1-OE roots as compared to non-infected transgenic roots with no significant change observed among RNAi roots. The GmCCA1-1 expression in transgenic GmCCA1-1-OE roots remains higher than control and RNAi roots. Decreased GmCCA1-1 mRNA among infected roots shows the altered expression is targeted by H. glycines. Gene expression of proven defense genes including 9 different mitogen activated protein kinases (GmMAPKs), NON-RACE SPECIFIC DISEASE RESISTANCE 1 (GmNDR1-1), RPM1-INTERACTING PROTEIN 4 (GmRIN4-4), and the secreted xyloglucan endotransglycosylase/hydrolase 43 (GmXTH43) in GmCCA1-1-OE and GmCCA1-1-RNAi roots, compared to controls, reveal a significant role of GmCCA1-1 expression in roots undergoing defense to H. glycines parasitism. The observation that GmCCA1-1 regulates GmXTH43 expression links the central circadian oscillator to the functionality of the secretion system.


Asunto(s)
Relojes Circadianos , Tylenchoidea , Animales , Pared Celular , Relojes Circadianos/genética , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Glycine max/metabolismo , Tylenchoidea/genética
7.
Front Plant Sci ; 13: 842597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599880

RESUMEN

Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.

8.
Virus Evol ; 8(1): veac019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371560

RESUMEN

In recent years, several newly discovered viruses infecting free-living nematodes, sedentary plant-parasitic nematodes, and migratory root lesion nematodes have been described. However, to the best of our knowledge, no comprehensive research focusing exclusively on metagenomic analysis of the soil nematode community virome has thus far been carried out. In this work, we have attempted to bridge this gap by investigating viral communities that are associated with soil-inhabiting organisms, particularly nematodes. This study demonstrates a remarkable diversity of RNA viruses in the natural soil environment. Over 150 viruses were identified in different soil-inhabiting hosts, of which more than 139 are potentially new virus species. Many of these viruses belong to the nematode virome, thereby enriching our understanding of the diversity and evolution of this complex part of the natural ecosystem.

9.
PLoS One ; 16(8): e0256472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34437620

RESUMEN

The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/parasitología , Aparato de Golgi/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Empalme Alternativo/genética , Animales , Secuencia Conservada , Productos Agrícolas/genética , Genes de Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Familia de Multigenes , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Células Vegetales/parasitología , Proteínas de Plantas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glycine max/enzimología , Especificidad de la Especie
10.
PLoS One ; 15(11): e0241678, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33147292

RESUMEN

Glycine max has 32 mitogen activated protein kinases (MAPKs), nine of them exhibiting defense functions (defense MAPKs) to the plant parasitic nematode Heterodera glycines. RNA seq analyses of transgenic G. max lines overexpressing (OE) each defense MAPK has led to the identification of 309 genes that are increased in their relative transcript abundance by all 9 defense MAPKs. Here, 71 of those genes are shown to also have measurable amounts of transcript in H. glycines-induced nurse cells (syncytia) produced in the root that are undergoing a defense response. The 71 genes have been grouped into 7 types, based on their expression profile. Among the 71 genes are 8 putatively-secreted proteins that include a galactose mutarotase-like protein, pollen Ole e 1 allergen and extensin protein, endomembrane protein 70 protein, O-glycosyl hydrolase 17 protein, glycosyl hydrolase 32 protein, FASCICLIN-like arabinogalactan protein 17 precursor, secreted peroxidase and a pathogenesis-related thaumatin protein. Functional transgenic analyses of all 8 of these candidate defense genes that employ their overexpression and RNA interference (RNAi) demonstrate they have a role in defense. Overexpression experiments that increase the relative transcript abundance of the candidate defense gene reduces the ability that the plant parasitic nematode Heterodera glycines has in completing its life cycle while, in contrast, RNAi of these genes leads to an increase in parasitism. The results provide a genomic analysis of the importance of MAPK signaling in relation to the secretion apparatus during the defense process defense in the G. max-H. glycines pathosystem and identify additional targets for future studies.


Asunto(s)
Glycine max/metabolismo , Glycine max/parasitología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/parasitología , Raíces de Plantas/metabolismo , Señales de Clasificación de Proteína/fisiología , Animales , Secuencia de Bases , Biología Computacional , Ontología de Genes , Proteínas Quinasas Activadas por Mitógenos/genética , Enfermedades de las Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/parasitología , Señales de Clasificación de Proteína/genética , Interferencia de ARN , Glycine max/enzimología
11.
Sci Rep ; 10(1): 15003, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929168

RESUMEN

Vesicle and target membrane fusion involves tethering, docking and fusion. The GTPase SECRETORY4 (SEC4) positions the exocyst complex during vesicle membrane tethering, facilitating docking and fusion. Glycine max (soybean) Sec4 functions in the root during its defense against the parasitic nematode Heterodera glycines as it attempts to develop a multinucleate nurse cell (syncytium) serving to nourish the nematode over its 30-day life cycle. Results indicate that other tethering proteins are also important for defense. The G. max exocyst is encoded by 61 genes: 5 EXOC1 (Sec3), 2 EXOC2 (Sec5), 5 EXOC3 (Sec6), 2 EXOC4 (Sec8), 2 EXOC5 (Sec10) 6 EXOC6 (Sec15), 31 EXOC7 (Exo70) and 8 EXOC8 (Exo84) genes. At least one member of each gene family is expressed within the syncytium during the defense response. Syncytium-expressed exocyst genes function in defense while some are under transcriptional regulation by mitogen-activated protein kinases (MAPKs). The exocyst component EXOC7-H4-1 is not expressed within the syncytium but functions in defense and is under MAPK regulation. The tethering stage of vesicle transport has been demonstrated to play an important role in defense in the G. max-H. glycines pathosystem, with some of the spatially and temporally regulated exocyst components under transcriptional control by MAPKs.


Asunto(s)
Glycine max/parasitología , Interacciones Huésped-Parásitos/fisiología , Proteínas de Soja/genética , Tylenchoidea/fisiología , Animales , Regulación de la Expresión Génica de las Plantas , Células Gigantes/parasitología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente , Interferencia de ARN , Proteínas de Soja/metabolismo , Glycine max/citología , Glycine max/genética , Tylenchoidea/citología
12.
BMC Plant Biol ; 19(1): 460, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31711416

RESUMEN

BACKGROUND: Blueberry is of high economic value. Most blueberry varieties selected for the fresh market have an appealing light blue coating or "bloom" on the fruit due to the presence of a visible heavy epicuticular wax layer. This waxy layer also serves as natural defense against fruit desiccation and deterioration. RESULTS: In this study, we attempted to identify gene(s) whose expression is related to the protective waxy coating on blueberry fruit utilizing two unique germplasm populations that segregate for the waxy layer. We bulked RNA from waxy and non-waxy blueberry progenies from the two northern-adapted rabbiteye hybrid breeding populations ('Nocturne' x T 300 and 'Nocturne' x US 1212), and generated 316.85 million RNA-seq reads. We de novo assembled this data set integrated with other publicly available RNA-seq data and trimmed the assembly into a 91,861 blueberry unigene collection. All unigenes were functionally annotated, resulting in 79 genes potentially related to wax accumulation. We compared the expression pattern of waxy and non-waxy progenies using edgeR and identified overall 1125 genes in the T 300 population and 2864 genes in the US 1212 population with at least a two-fold expression difference. After validating differential expression of several genes by RT-qPCR experiments, a candidate gene, FatB, which encodes acyl-[acyl-carrier-protein] hydrolase, emerged whose expression was closely linked to the segregation of the waxy coating in our populations. This gene was expressed at more than a five-fold higher level in waxy than non-waxy plants of both populations. We amplified and sequenced the cDNA for this gene from three waxy plants of each population, but were unable to amplify the cDNA from three non-waxy plants that were tested from each population. We aligned the Vaccinium deduced FATB protein sequence to FATB protein sequences from other plant species. Within the PF01643 domain, which gives FATB its catalytic function, 80.08% of the amino acids were identical or had conservative replacements between the blueberry and the Cucumis melo sequence (XP_008467164). We then amplified and sequenced a large portion of the FatB gene itself from waxy and non-waxy individuals of both populations. Alignment of the cDNA and gDNA sequences revealed that the blueberry FatB gene consists of six exons and five introns. Although we did not sequence through two very large introns, a comparison of the exon sequences found no significant sequence differences between the waxy and non-waxy plants. This suggests that another gene, which regulates or somehow affects FatB expression, must be segregating in the populations. CONCLUSIONS: This study is helping to achieve a greater understanding of epicuticular wax biosynthesis in blueberry. In addition, the blueberry unigene collection should facilitate functional annotation of the coming chromosomal level blueberry genome.


Asunto(s)
Arándanos Azules (Planta)/genética , Proteínas de Plantas/genética , Tioléster Hidrolasas/genética , Transcriptoma , Secuencia de Aminoácidos , Arándanos Azules (Planta)/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo
13.
Nat Commun ; 10(1): 2543, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186426

RESUMEN

The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonas syringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process.


Asunto(s)
Arabidopsis/genética , Relojes Circadianos/genética , Inmunidad de la Planta/genética , Arabidopsis/microbiología , Relojes Circadianos/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Estomas de Plantas/fisiología , Pseudomonas syringae/fisiología , Análisis de Secuencia de ARN
14.
Bioinformation ; 15(5): 338-341, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249436

RESUMEN

The mitogen activated protein kinase (MAPK) cascade is a central signal transduction platform, ubiquitous within the eukaryotes. MAPKs function prominently in different essential cellular processes such as proliferation, differentiation, survival and defense to pathogen attack. The 32 MAPKs of Glycine max (soybean) have been examined functionally to determine if they have any defense role, focusing in on infection by the plant-parasitic nematode Heterodera glycines. Of these 32 MAPKs, 9 have been shown to have a defense function. Hence, the Mitogen Activated Protein Kinase database (MAPKDB) has been developed to assist in such research. The MAPKDB allows users to search the annotations with sequence data for G. max transgenic lines undergoing overexpression (OE) or RNA interference (RNAi) of its defense map kinases. These defense MAPKs include map kinase 2 (MPK2), MPK3, MPK4, MPK5, MPK6, MPK13, MPK16, and MPK20. The database also contains data analysis information for each sample that helps to detect the differential expression of the genes identified within these samples. The database also contains data for each sample that helps to detect the differential expression of the genes identified within these samples. The database has been developed to manage G. max MAPK sequences with sequence alignment for 18 different samples along with two additional OE and RNAi control experiments for a total of 20.

15.
BMC Genomics ; 18(1): 688, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28870170

RESUMEN

BACKGROUND: Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understand the mechanism of the disease development, the genome of an isolate, MSPL10-6, from Mississippi, USA was sequenced, de novo assembled, and analyzed. RESULTS: The genome of MSPL 10-6 was estimated to be approximately 62 Mb in size with an overall G + C content of 48.6%. Of 16,597 predicted genes, 9866 genes (59.45%) had significant matches to genes in the NCBI nr database, while 18.01% of them did not link to any gene ontology classification, and 9.64% of genes did not significantly match any known genes. Analysis of the 1221 putative genes that encoded carbohydrate-activated enzymes (CAZys) indicated that 715 genes belong to three classes of CAZy that have a direct role in degrading plant cell walls. A novel fungal ulvan lyase (PL24; EC 4.2.2.-) was identified. Approximately 12.7% of the P. longicolla genome consists of repetitive elements. A total of 510 potentially horizontally transferred genes were identified. They appeared to originate from 22 other fungi, 26 eubacteria and 5 archaebacteria. CONCLUSIONS: The genome of the P. longicolla isolate MSPL10-6 represented the first reported genome sequence in the fungal Diaporthe-Phomopsis complex causing soybean diseases. The genome contained a number of Pfams not described previously. Information obtained from this study enhances our knowledge about this seed-borne pathogen and will facilitate further research on the genomic basis and pathogenicity mechanism of P. longicolla and aids in development of improved strategies for efficient management of Phomopsis seed decay in soybean.


Asunto(s)
Ascomicetos/genética , Ascomicetos/fisiología , Genómica , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Semillas/microbiología , Pared Celular/enzimología , Transferencia de Gen Horizontal , Anotación de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transposasas/genética
16.
Hortic Res ; 4: 17029, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674614

RESUMEN

Wild strawberry Fragaria vesca is emerging as an important model system for the cultivated strawberry due to its diploid genome and availability of extensive transcriptome data and a range of molecular genetic tools. Being able to better utilize these tools, especially the transcriptome data, will greatly facilitate research progress in strawberry and other Rosaceae fruit crops. The electronic fluorescent pictograph (eFP) software is a useful and popular tool to display transcriptome data visually, and is widely used in other model organisms including Arabidopsis and mouse. Here we applied eFP to display wild strawberry RNA sequencing (RNA-seq) data from 42 different tissues and stages, including various flower and fruit developmental stages. In addition, we generated eight additional RNA-seq data sets to represent tissues from ripening-stage receptacle fruit from yellow-colored and red-colored wild strawberry varieties. Differential gene expression analysis between these eight data sets provides additional information for understanding fruit-quality traits. Together, this work greatly facilitates the utility of the extensive transcriptome data for investigating strawberry flower and fruit development as well as fruit-quality traits.

17.
Genom Data ; 8: 67-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27222801

RESUMEN

Phomopsis seed decay of soybean is caused primarily by the seed-borne fungal pathogen Phomopsis longicolla (syn. Diaporthe longicolla). This disease severely decreases soybean seed quality, reduces seedling vigor and stand establishment, and suppresses yield. It is one of the most economically important soybean diseases. In this study we annotated the entire genome of P. longicolla isolate MSPL 10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome-wide functional annotation of a seed borne fungal pathogen in the Diaporthe-Phomopsis complex. The P. longicolla genome annotation will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean-fungal interactions. The genome annotation will also be a valuable resource for the research and agricultural communities. It will aid in the development of new control strategies for this pathogen. The annotations can be found from: http://bioinformatics.towson.edu/phomopsis_longicolla/download.html. NCBI accession number is: AYRD00000000.

18.
J Agric Food Chem ; 64(15): 3101-10, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27019116

RESUMEN

Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. This study used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions, the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.


Asunto(s)
Células Vegetales/metabolismo , Plantas/genética , Proteómica , Rhizoctonia/química , Virulencia/fisiología , Proteínas Fúngicas/metabolismo
19.
Bioinformation ; 12(4): 233-236, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28197060

RESUMEN

Phomopsis longicolla (syn. Diaporthe longicolla) is an important seed-borne fungal pathogen that primarily causes Phomopsis seed decay (PSD) in most soybean production areas worldwide. This disease severely decreases soybean seed quality by reducing seed viability and oil quality, altering seed composition, and increasing frequencies of moldy and/or split beans. To facilitate investigation of the genetic base of fungal virulence factors and understand the mechanism of disease development, we designed and developed a database for P. longicolla isolate MSPL 10-6 that contains information about the genome assemblies (contigs), gene models, gene descriptions and GO functional ontologies. A web-based front end to the database was built using ASP.NET, which allows researchers to search and mine the genome of this important fungus. This database represents the first reported genome database for a seed borne fungal pathogen in the Diaporthe- Phomopsis complex. The database will also be a valuable resource for research and agricultural communities. It will aid in the development of new control strategies for this pathogen. AVAILABILITY: http://bioinformatics.towson.edu/Phomopsis_longicolla/HomePage.aspx.

20.
Genom Data ; 3: 55-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26484148

RESUMEN

Phomopsis longicolla is the primary cause of Phomopsis seed decay in soybean. This disease severely affects soybean seed quality by reducing seed viability and oil content, altering seed composition, and increasing frequencies of moldy and/or split beans. It is one of the most economically important soybean diseases. Here, we report the de novo assembled draft genome sequence of the P. longicolla isolate MSPL10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome sequence of a seedborne fungal pathogen in the Diaporthe-Phomopsis complex. The P. longicolla genome sequence will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean-fungal interactions. The genome sequence will also be valuable for molecular genetic marker development, manipulation of pathogenicity-related genes and development of new control strategies for this pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...