Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 26(2): 463-472, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37867175

RESUMEN

AIM: This study compared the 5-year incidence rate of macrovascular and microvascular complications for tirzepatide, semaglutide and insulin glargine in individuals with type 2 diabetes, using the Building, Relating, Assessing, and Validating Outcomes (BRAVO) diabetes simulation model. RESEARCH DESIGN AND METHODS: This study was a 5-year SURPASS-2 trial extrapolation, with an insulin glargine arm added as an additional comparator. The 1-year treatment effects of tirzepatide (5, 10 or 15 mg), semaglutide (1 mg) and insulin glargine on glycated haemoglobin, systolic blood pressure, low-density lipoprotein and body weights were obtained from the SUSTAIN-4 and SURPASS-2 trials. We used the BRAVO model to predict 5-year complications for each study arm under two scenarios: the 1-year treatment effects persisted (optimistic) or diminished to none in 5 years (conservative). RESULTS: When compared with insulin glargine, we projected a 5-year risk reduction in cardiovascular adverse events [rate ratio (RR) 0.64, 95% confidence interval (CI) 0.61-0.67] and microvascular composite (RR 0.67, 95% CI 0.64-0.70) with 15 mg tirzepatide, and 5-year risk reduction in cardiovascular adverse events (RR 0.75, 95% CI 0.72-0.79) and microvascular composite (RR 0.79, 95% CI 0.76-0.82) with semaglutide (1 mg) under an optimistic scenario. Lower doses of tirzepatide also had similar, albeit smaller benefits. Treatment effects for tirzepatide and semaglutide were smaller but still significantly higher than insulin glargine under a conservative scenario. The 5-year risk reduction in diabetes-related complication events and mortality for the 15 mg tirzepatide compared with insulin glargine ranged from 49% to 10% under an optimistic scenario, which was reduced by 17%-33% when a conservative scenario was assumed. CONCLUSION: With the use of the BRAVO diabetes model, tirzepatide and semaglutide exhibited potential to reduce the risk of macrovascular and microvascular complications among individuals with type 2 diabetes, compared with insulin glargine in a 5-year window. Based on the current modelling assumptions, tirzepatide (15 mg) may potentially outperform semaglutide (1 mg). While the BRAVO model offered insights, the long-term cardiovascular benefit of tirzepatide should be further validated in a prospective clinical trial.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Humanos , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/efectos adversos , Insulina Glargina/efectos adversos , Estudios Prospectivos
2.
J Am Med Inform Assoc ; 31(1): 165-173, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37812771

RESUMEN

OBJECTIVE: Having sufficient population coverage from the electronic health records (EHRs)-connected health system is essential for building a comprehensive EHR-based diabetes surveillance system. This study aimed to establish an EHR-based type 1 diabetes (T1D) surveillance system for children and adolescents across racial and ethnic groups by identifying the minimum population coverage from EHR-connected health systems to accurately estimate T1D prevalence. MATERIALS AND METHODS: We conducted a retrospective, cross-sectional analysis involving children and adolescents <20 years old identified from the OneFlorida+ Clinical Research Network (2018-2020). T1D cases were identified using a previously validated computable phenotyping algorithm. The T1D prevalence for each ZIP Code Tabulation Area (ZCTA, 5 digits), defined as the number of T1D cases divided by the total number of residents in the corresponding ZCTA, was calculated. Population coverage for each ZCTA was measured using observed health system penetration rates (HSPR), which was calculated as the ratio of residents in the corresponding ZTCA and captured by OneFlorida+ to the overall population in the same ZCTA reported by the Census. We used a recursive partitioning algorithm to identify the minimum required observed HSPR to estimate T1D prevalence and compare our estimate with the reported T1D prevalence from the SEARCH study. RESULTS: Observed HSPRs of 55%, 55%, and 60% were identified as the minimum thresholds for the non-Hispanic White, non-Hispanic Black, and Hispanic populations. The estimated T1D prevalence for non-Hispanic White and non-Hispanic Black were 2.87 and 2.29 per 1000 youth, which are comparable to the reference study's estimation. The estimated prevalence of T1D for Hispanics (2.76 per 1000 youth) was higher than the reference study's estimation (1.48-1.64 per 1000 youth). The standardized T1D prevalence in the overall Florida population was 2.81 per 1000 youth in 2019. CONCLUSION: Our study provides a method to estimate T1D prevalence in children and adolescents using EHRs and reports the estimated HSPRs and prevalence of T1D for different race and ethnicity groups to facilitate EHR-based diabetes surveillance.


Asunto(s)
Diabetes Mellitus Tipo 1 , Niño , Humanos , Adolescente , Adulto Joven , Adulto , Diabetes Mellitus Tipo 1/epidemiología , Prevalencia , Registros Electrónicos de Salud , Estudios Transversales , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA