Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 12(1): 2633, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976149

RESUMEN

Ebola virus (EBOV) glycoprotein (GP) can be recognized by neutralizing antibodies (NAbs) and is the main target for vaccine design. Here, we first investigate the contribution of the stalk and heptad repeat 1-C (HR1C) regions to GP metastability. Specific stalk and HR1C modifications in a mucin-deleted form (GPΔmuc) increase trimer yield, whereas alterations of HR1C exert a more complex effect on thermostability. Crystal structures are determined to validate two rationally designed GPΔmuc trimers in their unliganded state. We then display a modified GPΔmuc trimer on reengineered protein nanoparticles that encapsulate a layer of locking domains (LD) and a cluster of helper T-cell epitopes. In mice and rabbits, GP trimers and nanoparticles elicit cross-ebolavirus NAbs, as well as non-NAbs that enhance pseudovirus infection. Repertoire sequencing reveals quantitative profiles of vaccine-induced B-cell responses. This study demonstrates a promising vaccine strategy for filoviruses, such as EBOV, based on GP stabilization and nanoparticle display.


Asunto(s)
Vacunas contra el Virus del Ébola/administración & dosificación , Glicoproteínas/administración & dosificación , Fiebre Hemorrágica Ebola/terapia , Proteínas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/administración & dosificación , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/ultraestructura , Linfocitos B/inmunología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Vacunas contra el Virus del Ébola/genética , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/genética , Ebolavirus/inmunología , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/ultraestructura , Femenino , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicoproteínas/ultraestructura , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Ratones , Nanopartículas/química , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Ingeniería de Proteínas , Multimerización de Proteína/genética , Multimerización de Proteína/inmunología , Estabilidad Proteica , Conejos , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/ultraestructura
3.
Cell Rep ; 35(2): 108984, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852862

RESUMEN

Antibodies that target the glycan cap epitope on the ebolavirus glycoprotein (GP) are common in the adaptive response of survivors. A subset is known to be broadly neutralizing, but the details of their epitopes and basis for neutralization are not well understood. Here, we present cryoelectron microscopy (cryo-EM) structures of diverse glycan cap antibodies that variably synergize with GP base-binding antibodies. These structures describe a conserved site of vulnerability that anchors the mucin-like domains (MLDs) to the glycan cap, which we call the MLD anchor and cradle. Antibodies that bind to the MLD cradle share common features, including use of IGHV1-69 and IGHJ6 germline genes, which exploit hydrophobic residues and form ß-hairpin structures to mimic the MLD anchor, disrupt MLD attachment, destabilize GP quaternary structure, and block cleavage events required for receptor binding. Our results provide a molecular basis for ebolavirus neutralization by broadly reactive glycan cap antibodies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos , Sitios de Unión , Microscopía por Crioelectrón , Ebolavirus/crecimiento & desarrollo , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Epítopos/química , Epítopos/inmunología , Femenino , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Humanos , Células Jurkat , Ratones , Modelos Moleculares , Polisacáridos/química , Polisacáridos/inmunología , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
4.
mBio ; 12(1)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593971

RESUMEN

Genomic surveillance of viral isolates during the 2013-2016 Ebola virus epidemic in Western Africa, the largest and most devastating filovirus outbreak on record, revealed several novel mutations. The responsible strain, named Makona, carries an A-to-V substitution at position 82 (A82V) in the glycoprotein (GP), which is associated with enhanced infectivity in vitro Here, we investigated the mechanistic basis for this enhancement as well as the interplay between A82V and a T-to-I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP, with the residue at position 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following colocalization with the viral receptor Niemann-Pick C1 (NPC1). Furthermore, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product with a molecular weight of approximately 12,000 (12K), which we hypothesize corresponds to a form of GP that is pre-triggered for fusion. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher levels of infectivity.IMPORTANCE The 2013-2016 outbreak of Ebola virus disease in West Africa demonstrated the potential for previously localized outbreaks to turn into regional, or even global, health emergencies. With over 28,000 cases and 11,000 confirmed deaths, this outbreak was over 50 times as large as any previously recorded. This outbreak also afforded the largest-ever collection of Ebola virus genomic sequence data, allowing new insights into viral transmission and evolution. Viral mutants arising during the outbreak have attracted attention for their potentially altered patterns of infectivity in cell culture, with potential, if unclear, implications for increased viral spread and/or virulence. Here, we report the properties of one such mutation in the viral glycoprotein, A82V, and its interplay with a previously described polymorphism at position 544. We show that mutations at both residues promote infection and fusion activation in cells but that A82V additionally leads to increased infectivity under cathepsin-limited conditions and the generation of a novel glycoprotein cleavage product.


Asunto(s)
Ebolavirus/genética , Epidemias , Fusión de Membrana/genética , Mutación , Proteolisis , Proteínas del Envoltorio Viral/genética , Internalización del Virus , África Occidental , Sustitución de Aminoácidos/genética , Animales , Catepsina L/metabolismo , Línea Celular , Chlorocebus aethiops , Fiebre Hemorrágica Ebola/virología , Humanos , Células Vero
5.
mBio ; 12(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436438

RESUMEN

Ebola virus (EBOV) entry into host cells comprises stepwise and extensive interactions of the sole viral surface glycoprotein (GP) with multiple host factors. During the intricate process, following virus uptake and trafficking to late endosomal/lysosomal compartments, GP is proteolytically processed to cleaved GP (GPCL) by the endosomal proteases cathepsin B and L, unmasking GP's receptor-binding site. Engagement of GPCL with the universal filoviral intracellular receptor Niemann-Pick C1 (NPC1) eventually culminates in fusion between viral and cellular membranes, cytoplasmic escape of the viral nucleocapsid, and subsequent infection. Mechanistic delineation of the indispensable GPCL-NPC1-binding step has been severely hampered by the unavailability of a robust cell-based assay assessing interaction of GPCL with full-length endosomal NPC1. Here, we describe a novel in situ assay to monitor GPCL-NPC1 engagement in intact, infected cells. Visualization of the subcellular localization of binding complexes is based on the principle of DNA-assisted, antibody-mediated proximity ligation. Virus-receptor binding monitored by proximity ligation was contingent on GP's proteolytic cleavage and was sensitive to perturbations in the GPCL-NPC1 interface. Our assay also specifically decoupled detection of virus-receptor binding from steps post-receptor binding, such as membrane fusion and infection. Testing of multiple FDA-approved small-molecule inhibitors revealed that drug treatments inhibited virus entry and GPCL-NPC1 recognition by distinctive mechanisms. Together, here we present a newly established proximity ligation assay, which will allow us to dissect cellular and viral requirements for filovirus-receptor binding and to delineate the mechanisms of action of inhibitors on filovirus entry in a cell-based system.IMPORTANCE Ebola virus causes episodic but increasingly frequent outbreaks of severe disease in Middle Africa, as shown by the recently overcome second largest outbreak on record in the Democratic Republic of Congo. Despite considerable effort, FDA-approved anti-filoviral therapeutics or targeted interventions are not available yet. Virus host-cell invasion represents an attractive target for antivirals; however, our understanding of the inhibitory mechanisms of novel therapeutics is often hampered by fragmented knowledge of the filovirus-host molecular interactions required for viral infection. To help close this critical knowledge gap, here, we report an in situ assay to monitor binding of the EBOV glycoprotein to its receptor NPC1 in intact, infected cells. We demonstrate that our in situ assay based on proximity ligation represents a powerful tool to delineate receptor-viral glycoprotein interactions. Similar assays can be utilized to examine receptor interactions of diverse viral surface proteins whose studies have been hampered until now by the lack of robust in situ assays.


Asunto(s)
Ebolavirus/química , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Sitios de Unión , Línea Celular , Endosomas/metabolismo , Técnicas de Inactivación de Genes , Glicoproteínas , Humanos , Lisosomas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Virión , Internalización del Virus
6.
Immunity ; 52(2): 388-403.e12, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32023489

RESUMEN

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Quimioterapia Combinada , Epítopos , Femenino , Glicoproteínas/química , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos BALB C , Imitación Molecular , Conformación Proteica
7.
Virol J ; 12: 140, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26362430

RESUMEN

BACKGROUND: Infection by any one of 15 high risk human papillomavirus (hrHPV) types causes most invasive cervical cancers. Their oncogenic genome is encapsidated by L1 (major) and L2 (minor) coat proteins. Current HPV prophylactic vaccines are composed of L1 virus-like particles (VLP) that elicit type restricted immunity. An N-terminal region of L2 protein identified by neutralizing monoclonal antibodies comprises a protective epitope conserved among HPV types, but it is weakly immunogenic compared to L1 VLP. The major antigenic capsid protein of adenovirus type 5 (Ad5) is hexon which contains 9 hypervariable regions (HVRs) that form the immunodominant neutralizing epitopes. Insertion of weakly antigenic foreign B cell epitopes into these HVRs has shown promise in eliciting robust neutralizing antibody responses. Thus here we sought to generate a broadly protective prophylactic HPV vaccine candidate by inserting a conserved protective L2 epitope into the Ad5 hexon protein for VLP-like display. METHODS: Four recombinant adenoviruses were generated without significant compromise of viral replication by introduction of HPV16 amino acids L2 12-41 into Ad5 hexon, either by insertion into, or substitution of, either hexon HVR1 or HVR5. RESULTS: Vaccination of mice three times with each of these L2-recombinant adenoviruses induced similarly robust adenovirus-specific serum antibody but weak titers against L2. These L2-specific responses were enhanced by vaccination in the presence of alum and monophoryl lipid A adjuvant. Sera obtained after the third immunization exhibited low neutralizing antibody titers against HPV16 and HPV73. L2-recombinant adenovirus vaccination without adjuvant provided partial protection of mice against HPV16 challenge to either the vagina or skin. In contrast, vaccination with each L2-recombinant adenovirus formulated in adjuvant provided robust protection against vaginal challenge with HPV16, but not against HPV56. CONCLUSION: We conclude that introduction of HPV16 L2 12-41 epitope into Ad5 hexon HVR1 or HVR5 is a feasible method of generating a protective HPV vaccine, but further optimization is required to strengthen the L2-specific response and broaden protection to the more diverse hrHPV.


Asunto(s)
Adenovirus Humanos/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Técnicas de Visualización de Superficie Celular , Portadores de Fármacos , Proteínas Oncogénicas Virales/inmunología , Vacunas contra Papillomavirus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Femenino , Ratones Endogámicos BALB C , Proteínas Oncogénicas Virales/genética , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/genética , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...