Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(4): e1012029, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648221

RESUMEN

The circadian clock is an evolutionarily-conserved molecular oscillator that enables species to anticipate rhythmic changes in their environment. At a molecular level, the core clock genes induce circadian oscillations in thousands of genes in a tissue-specific manner, orchestrating myriad biological processes. While previous studies have investigated how the core clock circuit responds to environmental perturbations such as temperature, the downstream effects of such perturbations on circadian regulation remain poorly understood. By analyzing bulk-RNA sequencing of Drosophila fat bodies harvested from flies subjected to different environmental conditions, we demonstrate a highly condition-specific circadian transcriptome: genes are cycling in a temperature-specific manner, and the distributions of their phases also differ between the two conditions. Further employing a reference-based gene regulatory network (Reactome), we find evidence of increased gene-gene coordination at low temperatures and synchronization of rhythmic genes that are network neighbors. We report that the phase differences between cycling genes increase as a function of geodesic distance in the low temperature condition, suggesting increased coordination of cycling on the gene regulatory network. Our results suggest a potential mechanism whereby the circadian clock mediates the fly's response to seasonal changes in temperature.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Temperatura , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Redes Reguladoras de Genes/genética , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Regulación de la Expresión Génica/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Drosophila/genética , Drosophila/fisiología , Transcriptoma/genética , Biología Computacional , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transcripción Genética/genética
2.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293065

RESUMEN

A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.

3.
J Biol Rhythms ; 39(1): 5-19, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37978840

RESUMEN

Collegiate athletes must satisfy the academic obligations common to all undergraduates, but they have the additional structural and social stressors of extensive practice time, competition schedules, and frequent travel away from their home campus. Clearly such stressors can have negative impacts on both their academic and athletic performances as well as on their health. These concerns are made more acute by recent proposals and decisions to reorganize major collegiate athletic conferences. These rearrangements will require more multi-day travel that interferes with the academic work and personal schedules of athletes. Of particular concern is additional east-west travel that results in circadian rhythm disruptions commonly called jet lag that contribute to the loss of amount as well as quality of sleep. Circadian misalignment and sleep deprivation and/or sleep disturbances have profound effects on physical and mental health and performance. We, as concerned scientists and physicians with relevant expertise, developed this white paper to raise awareness of these challenges to the wellbeing of our student-athletes and their co-travelers. We also offer practical steps to mitigate the negative consequences of collegiate travel schedules. We discuss the importance of bedtime protocols, the availability of early afternoon naps, and adherence to scheduled lighting exposure protocols before, during, and after travel, with support from wearables and apps. We call upon departments of athletics to engage with sleep and circadian experts to advise and help design tailored implementation of these mitigating practices that could contribute to the current and long-term health and wellbeing of their students and their staff members.


Asunto(s)
Ritmo Circadiano , Sueño , Humanos , Síndrome Jet Lag , Atletas , Estudiantes , Viaje
4.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961403

RESUMEN

The circadian rhythm is an evolutionarily-conserved molecular oscillator that enables species to anticipate rhythmic changes in their environment. At a molecular level, the core clock genes induce a circadian oscillation in thousands of genes in a tissue-specific manner, orchestrating myriad biological processes. While studies have investigated how the core clock circuit responds to environmental perturbations such as temperature, the downstream effects of such perturbations on circadian regulation remain poorly understood. By analyzing bulk-RNA sequencing of Drosophila fat bodies harvested from flies subjected to different environmental conditions, we demonstrate a highly condition-specific circadian transcriptome. Further employing a reference-based gene regulatory network (Reactome), we find evidence of increased gene-gene coordination at low temperatures and synchronization of rhythmic genes that are network neighbors. Our results point to the mechanisms by which the circadian clock mediates the fly's response to seasonal changes in temperature.

5.
bioRxiv ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36711760

RESUMEN

Circadian clocks may mediate lifespan extension by caloric or dietary restriction (DR). We find that the core clock transcription factor Clock is crucial for a robust longevity and fecundity response to DR in Drosophila. To identify clock-controlled mediators, we performed RNA-sequencing from abdominal fat bodies across the 24 h day after just 5 days under control or DR diets. In contrast to more chronic DR regimens, we did not detect significant changes in the rhythmic expression of core clock genes. Yet we discovered that DR induced de novo rhythmicity or increased expression of rhythmic clock output genes. Network analysis revealed that DR increased network connectivity in one module comprised of genes encoding proteasome subunits. Adult, fat body specific RNAi knockdown demonstrated that proteasome subunits contribute to DR-mediated lifespan extension. Thus, clock control of output links DR-mediated changes in rhythmic transcription to lifespan extension.

6.
Sleep ; 45(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-35998317

RESUMEN

STUDY OBJECTIVES: To develop a new publicly available software SleepMat that analyzes Drosophila Activity Monitoring system data. METHODS: The software is built on Matlab platform, employs an easy-to-use graphic user interface, and is highly flexible to customize data inputs. RESULTS: This software provides large number of sleep and circadian parameters including period, actogram, anticipation, sleep amount, bout length, bout number, activity, sleep deprivation, latency, lifespan, and eduction results. CONCLUSIONS: This software will enable a user-friendly high throughput analysis of a broad range of sleep and circadian parameters that can be coupled to the power of Drosophila genetics.


Asunto(s)
Ritmo Circadiano , Sueño , Animales , Privación de Sueño , Drosophila , Programas Informáticos
7.
Elife ; 112022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35735904

RESUMEN

Homeostatic and circadian processes collaborate to appropriately time and consolidate sleep and wake. To understand how these processes are integrated, we scheduled brief sleep deprivation at different times of day in Drosophila and find elevated morning rebound compared to evening. These effects depend on discrete morning and evening clock neurons, independent of their roles in circadian locomotor activity. In the R5 ellipsoid body sleep homeostat, we identified elevated morning expression of activity dependent and presynaptic gene expression as well as the presynaptic protein BRUCHPILOT consistent with regulation by clock circuits. These neurons also display elevated calcium levels in response to sleep loss in the morning, but not the evening consistent with the observed time-dependent sleep rebound. These studies reveal the circuit and molecular mechanisms by which discrete circadian clock neurons program a homeostatic sleep center.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Sueño/fisiología
8.
PLoS Biol ; 20(1): e3001456, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081110

RESUMEN

In traumatic brain injury (TBI), the initial injury phase is followed by a secondary phase that contributes to neurodegeneration, yet the mechanisms leading to neuropathology in vivo remain to be elucidated. To address this question, we developed a Drosophila head-specific model for TBI termed Drosophila Closed Head Injury (dCHI), where well-controlled, nonpenetrating strikes are delivered to the head of unanesthetized flies. This assay recapitulates many TBI phenotypes, including increased mortality, impaired motor control, fragmented sleep, and increased neuronal cell death. TBI results in significant changes in the transcriptome, including up-regulation of genes encoding antimicrobial peptides (AMPs). To test the in vivo functional role of these changes, we examined TBI-dependent behavior and lethality in mutants of the master immune regulator NF-κB, important for AMP induction, and found that while sleep and motor function effects were reduced, lethality effects were enhanced. Similarly, loss of most AMP classes also renders flies susceptible to lethal TBI effects. These studies validate a new Drosophila TBI model and identify immune pathways as in vivo mediators of TBI effects.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Drosophila melanogaster , Neuroglía/inmunología , Animales , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/mortalidad , Modelos Animales de Enfermedad , Inmunidad Innata , Locomoción , Masculino , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Trastornos del Sueño-Vigilia , Transcriptoma
9.
Hum Mol Genet ; 31(7): 1141-1150, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34750631

RESUMEN

Disrupted circadian rhythms are a prominent feature of multiple neurodegenerative diseases. Yet mechanisms linking Tau to rhythmic behavior remain unclear. Here, we find that expression of a phosphomimetic human Tau mutant (TauE14) in Drosophila circadian pacemaker neurons disrupts free-running rhythmicity. While cell number and oscillations of the core clock protein PERIOD are unaffected in the small LNv (sLNv) neurons important for free running rhythms, we observe a near complete loss of the major LNv neuropeptide pigment dispersing factor (PDF) in the dorsal axonal projections of the sLNvs. This was accompanied by a ~50% reduction in the area of the dorsal terminals and a modest decrease in cell body PDF levels. Expression of wild-type Tau also reduced axonal PDF levels but to a lesser extent than TauE14. TauE14 also induces a complete loss of mitochondria from these sLNv projections. However, mitochondria were increased in sLNv cell bodies in TauE14 flies. These results suggest that TauE14 disrupts axonal transport of neuropeptides and mitochondria in circadian pacemaker neurons, providing a mechanism by which Tau can disrupt circadian behavior prior to cell loss.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34799448

RESUMEN

Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Neuropéptidos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Drosophila , Proteínas de Drosophila/genética , Neuronas/metabolismo , Neuropéptidos/genética , Proteómica , Sueño
11.
N Engl J Med ; 384(20): e76, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34010544
12.
Science ; 372(6539)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859007

RESUMEN

Ray et al (Reports, 14 February 2020, p. 800) report apparent transcriptional circadian rhythms in mouse tissues lacking the core clock component BMAL1. To better understand these surprising results, we reanalyzed the associated data. We were unable to reproduce the original findings, nor could we identify reliably cycling genes. We conclude that there is insufficient evidence to support circadian transcriptional rhythms in the absence of Bmal1.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Factores de Transcripción ARNTL/genética , Animales , Ritmo Circadiano/genética , Ratones
13.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523916

RESUMEN

Sleep is a highly conserved state, suggesting that sleep's benefits outweigh the increased vulnerability it brings. Yet, little is known about how sleep fulfills its functions. Here, we used video tracking in tethered flies to identify a discrete deep sleep stage in Drosophila, termed proboscis extension sleep, that is defined by repeated stereotyped proboscis extensions and retractions. Proboscis extension sleep is accompanied by highly elevated arousal thresholds and decreased brain activity, indicative of a deep sleep state. Preventing proboscis extensions increases injury-related mortality and reduces waste clearance. Sleep deprivation reduces waste clearance and during subsequent rebound sleep, sleep, proboscis extensions, and waste clearance are increased. Together, these results provide evidence of a discrete deep sleep stage that is linked to a specific function and suggest that waste clearance is a core and ancient function of deep sleep.

15.
Curr Biol ; 31(1): 138-149.e5, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33157022

RESUMEN

The timing of behavior under natural light-dark conditions is a function of circadian clocks and photic input pathways, but a mechanistic understanding of how these pathways collaborate in animals is lacking. Here we demonstrate in Drosophila that the Phosphatase of Regenerating Liver-1 (PRL-1) sets period length and behavioral phase gated by photic signals. PRL-1 knockdown in PDF clock neurons dramatically lengthens circadian period. PRL-1 mutants exhibit allele-specific interactions with the light- and clock-regulated gene timeless (tim). Moreover, we show that PRL-1 promotes TIM accumulation and dephosphorylation. Interestingly, the PRL-1 mutant period lengthening is suppressed in constant light, and PRL-1 mutants display a delayed phase under short, but not long, photoperiod conditions. Thus, our studies reveal that PRL-1-dependent dephosphorylation of TIM is a core mechanism of the clock that sets period length and phase in darkness, enabling the behavioral adjustment to change day-night cycles.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Oscuridad , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Mutación , Neuropéptidos/metabolismo , Fosforilación/fisiología , Fotoperiodo , Proteínas Tirosina Fosfatasas/genética , Factores de Tiempo
16.
J Biol Rhythms ; 35(5): 439-451, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32613882

RESUMEN

The circadian rhythm drives the oscillatory expression of thousands of genes across all tissues, coordinating physiological processes. The effect of this rhythm on health has generated increasing interest in discovering genes under circadian control by searching for periodic patterns in transcriptomic time-series experiments. While algorithms for detecting cycling transcripts have advanced, there remains little guidance quantifying the effect of experimental design and analysis choices on cycling detection accuracy. We present TimeTrial, a user-friendly benchmarking framework using both real and synthetic data to investigate cycle detection algorithms' performance and improve circadian experimental design. Results show that the optimal choice of analysis method depends on the sampling scheme, noise level, and shape of the waveform of interest and provides guidance on the impact of sampling frequency and duration on cycling detection accuracy. The TimeTrial software is freely available for download and may also be accessed through a web interface. By supplying a tool to vary and optimize experimental design considerations, TimeTrial will enhance circadian transcriptomics studies.


Asunto(s)
Disciplina de Cronobiología/métodos , Ritmo Circadiano , Perfilación de la Expresión Génica/métodos , Programas Informáticos , Transcriptoma , Algoritmos , Animales , Humanos , Ratones , Factores de Tiempo
17.
Curr Biol ; 30(12): 2275-2288.e5, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32442464

RESUMEN

Animals react to environmental changes over timescales ranging from seconds to days and weeks. An important question is how sensory stimuli are parsed into neural signals operating over such diverse temporal scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes information about long-lasting, absolute cold temperature in Drosophila. We identify second-order thermosensory projection neurons (TPN-IIs) exhibiting sustained firing that scales with absolute temperature. Strikingly, this activity only appears below the species-specific, preferred temperature for D. melanogaster (∼25°C). We trace the inputs and outputs of TPN-IIs and find that they are embedded in a cold "thermometer" circuit that provides powerful and persistent inhibition to brain centers involved in regulating sleep and activity. Our results demonstrate that the fly nervous system selectively encodes and relays absolute temperature information and illustrate a sensory mechanism that allows animals to adapt behavior specifically to cold conditions on the timescale of hours to days.


Asunto(s)
Frío , Drosophila melanogaster/fisiología , Células Receptoras Sensoriales/fisiología , Sensación Térmica/fisiología , Animales , Encéfalo/fisiología , Actividad Motora/fisiología , Sueño/fisiología
18.
PLoS Genet ; 15(10): e1008356, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31593562

RESUMEN

Disrupted circadian rhythms is a prominent and early feature of neurodegenerative diseases including Huntington's disease (HD). In HD patients and animal models, striatal and hypothalamic neurons expressing molecular circadian clocks are targets of mutant Huntingtin (mHtt) pathogenicity. Yet how mHtt disrupts circadian rhythms remains unclear. In a genetic screen for modifiers of mHtt effects on circadian behavior in Drosophila, we discovered a role for the neurodegenerative disease gene Ataxin2 (Atx2). Genetic manipulations of Atx2 modify the impact of mHtt on circadian behavior as well as mHtt aggregation and demonstrate a role for Atx2 in promoting mHtt aggregation as well as mHtt-mediated neuronal dysfunction. RNAi knockdown of the Fragile X mental retardation gene, dfmr1, an Atx2 partner, also partially suppresses mHtt effects and Atx2 effects depend on dfmr1. Atx2 knockdown reduces the cAMP response binding protein A (CrebA) transcript at dawn. CrebA transcript level shows a prominent diurnal regulation in clock neurons. Loss of CrebA also partially suppresses mHtt effects on behavior and cell loss and restoration of CrebA can suppress Atx2 effects. Our results indicate a prominent role of Atx2 in mediating mHtt pathology, specifically via its regulation of CrebA, defining a novel molecular pathway in HD pathogenesis.


Asunto(s)
Ataxina-2/genética , Relojes Circadianos/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteínas de Drosophila/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Animales , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Enfermedad de Huntington/patología , Proteínas Mutantes/genética , Neuronas/metabolismo , Transducción de Señal/genética
19.
Cell Rep ; 27(1): 59-70.e4, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943415

RESUMEN

Neurodegenerative diseases commonly involve the disruption of circadian rhythms. Studies indicate that mutant Huntingtin (mHtt), the cause of Huntington's disease (HD), disrupts circadian rhythms often before motor symptoms are evident. Yet little is known about the molecular mechanisms by which mHtt impairs circadian rhythmicity and whether circadian clocks can modulate HD pathogenesis. To address this question, we used a Drosophila HD model. We found that both environmental and genetic perturbations of the circadian clock alter mHtt-mediated neurodegeneration. To identify potential genetic pathways that mediate these effects, we applied a behavioral platform to screen for clock-regulated HD suppressors, identifying a role for Heat Shock Protein 70/90 Organizing Protein (Hop). Hop knockdown paradoxically reduces mHtt aggregation and toxicity. These studies demonstrate a role for the circadian clock in a neurodegenerative disease model and reveal a clock-regulated molecular and cellular pathway that links clock function to neurodegenerative disease.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Proteína Huntingtina/metabolismo , Proteína Huntingtina/toxicidad , Agregación Patológica de Proteínas , Animales , Animales Modificados Genéticamente , Relojes Circadianos/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrión no Mamífero , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Proteínas Mutantes/fisiología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA