Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artif Cells Nanomed Biotechnol ; 52(1): 131-144, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38423087

RESUMEN

Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.


Asunto(s)
Mucormicosis , Puntos Cuánticos , Ratas , Animales , Puntos Cuánticos/química , Antifúngicos/farmacología , Carbono/farmacología , Carbono/química , Nitrógeno/química
2.
Microorganisms ; 11(10)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37894164

RESUMEN

Salmonella spp. is considered one of the most important causes of food-borne illness globally. Poultry and its products are usually incriminated in its spread. Treatment with antibiotics is the first choice to deal with such cases; however, multi-drug resistance and biofilm formation have been recorded in animals and humans. This study aimed to detect the antibiotic profile of isolated traits from different sources and to find innovative alternatives, such as MOFs. A total of 350 samples were collected from randomly selected retailed poultry shops in Beni-Suef Province, Egypt. Their antimicrobial susceptibility against eight different antibiotics was tested, and multi-drug resistance was found in most of them. Surprisingly, promising results toward MOF were detected. Cu/Ni/Co-MOF (MOF3) showed superior antibacterial efficiency to Cu/Ni-MOF (MOF2) and Cu-MOF (MOF1) at p value ≤ 0.01. These findings highlight the tendency of Salmonella spp. to develop MDR to most of the antibiotics used in the field and the need to find new alternatives to overcome it, as well as confirming the ability of the environment to act as a source of human and animal affection.

3.
RSC Adv ; 13(37): 26069-26088, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37664207

RESUMEN

In order to achieve sustainable benefits for the adsorption of wastewater pollutants, spent adsorbents need to be recycled and/or valorized. This work studied a two-dimensional (2D) ZnMgFe layered double hydroxide (LDH) for ceftriaxone sodium (CTX) adsorption. This LDH showed a crystallite size of 9.8 nm, a BET surface area of 367.59 m2 g-1, and a micro-sphere-like morphology. The factors investigated in this study were the adsorbent dose, initial concentration, initial pH, and contact time. ZnMgFe LDH showed 99% removal of CTX with a maximum adsorption capacity of 241.75 mg g-1 at pH = 5. The Dubinin-Radushkevich model was found to be the most adequate isotherm model. The spent adsorbent (ZnMgFe LDH/CTX) was reused as an electro-oxidation catalyst for direct methanol fuel cells. ZnMgFe LDH/CTX showed almost a 10-fold increase in electrochemical activity for all scan rates compared to bare ZnMgFe LDH in 1 M KOH. As methanol concentration increases, the maximum current density generated by both the ZnMgFe LDH and ZnMgFe LDH/CTX samples increases. Moreover, the maximum current density for ZnMgFe LDH/CTX was 47 mA cm-2 at a methanol concentration of 3 M. Both samples possess reasonable stability over a 3600 S time window with no significant deterioration of electrochemical performance. Moreover, the antimicrobial studies showed that ZnMgFe LDH had a significant antifungal (especially Aspergillus, Mucor, and Penicillium species) and antibacterial (with greater action against Gram-positive than negative) impact on several severe infectious diseases, including Aspergillus. This study paves the way for the reuse and valorization of selected adsorbents toward circular economy requirements.

4.
Antibiotics (Basel) ; 12(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37237702

RESUMEN

The majority of bone and joint infections are caused by Gram-positive organisms, specifically staphylococci. Additionally, gram-negative organisms such as E. coli can infect various organs through infected wounds. Fungal arthritis is a rare condition, with examples including Mucormycosis (Mucor rhizopus). These infections are difficult to treat, making the use of novel antibacterial materials for bone diseases crucial. Sodium titanate nanotubes (NaTNTs) were synthesized using the hydrothermal method and characterized using a Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Zeta sizer. The antibacterial and antifungal activity of the NaTNT framework nanostructure was evaluated using Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Disc Diffusion assays for bacterial activity, and Minimum Fungicidal Concentration (MFC) for antifungal investigation. In addition to examining in vivo antibacterial activity in rats through wound induction and infection, pathogen counts and histological examinations were also conducted. In vitro and in vivo tests revealed that NaTNT has substantial antifungal and antibacterial effects on various bone-infected pathogens. In conclusion, current research indicates that NaTNT is an efficient antibacterial agent against a variety of microbial pathogenic bone diseases.

5.
Int J Biol Macromol ; 242(Pt 1): 124768, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37169054

RESUMEN

The highly poisonous, non-biodegradable heavy metals present serious concern in wastewater environmental sustainability and human health. Using adsorption is an effective technology for the treatment of this kind of water. Therefore, developing efficient and cost-effective adsorbents considers a significant and an emerging topic in the field the water purification. Chitosan grafted polyacrylonitrile (Cs-g-PAN) was facially fabricated via graft polymerization using ammonium persulfate (APS) as the initiator. The simple ultrasonic technique was used for doping ZnO nanoparticles into the Cs-g-PAN matrix to prepare chitosan-grafted polyacrylonitrile/ZnO (Cs-g-PAN/ZnO). For comparative study, pure ZnO and nanocomposite of PAN doped with ZnO (PAN/ZnO) were also prepared. XRD, FTIR, SEM, TEM, BET, EDS, and TGA measurements were conducted to confirm the morphological and structural properties of the prepared materials. Cs-g-PAN/ZnO possesses a specific surface area of 20.23 m2/g with a pore size of 31.58 nm and pore volume of 0.16 cm3 g-1. The adsorption behavior toward Fe(II) as a pollutant for groundwater was studied for the synthesized materials. The effect of pH (4-8), contact time (5-60 min), adsorbent dose (0.01-0.3 g), and different temperature degrees (278, 288, 298, 308, and 318 K) on the removal of iron (II) has been conducted. The removal efficiency was achieved 100 % under the optimum condition, at pH = 7, contact time 30 min, adsorbate concentration 0.93 mg/L, and adsorbent dosage 0.05 g/L at room temperature. Langmuir and Freundlich's isothermal and kinetic studies have been analyzed to determine the adsorption mechanism of Fe(II) ions on the synthesized nanomaterials. The adsorption process of Fe(II) over the surface of prepared catalysts proceeded via the Langmuir model and pseudo-second-order reaction kinetics with R2 > 0.99. Suggesting the formation of Fe(II) monolayer over the adsorbent surface and the rate-limiting step is probably controlled by chemisorption through sharing the electrons between Fe+2 and the prepared catalyst.


Asunto(s)
Quitosano , Agua Subterránea , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Óxido de Zinc , Humanos , Quitosano/química , Hierro , Óxido de Zinc/química , Cinética , Nanocompuestos/química , Compuestos Ferrosos , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
6.
RSC Adv ; 13(12): 8090-8100, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36922950

RESUMEN

The slow kinetics of the oxygen reduction reaction (ORR) limits the large-scale usage of the fuel cells. Thus, it is crucial to develop an efficient and stable electrocatalyst for the ORR. Herein, facile synthesis of three-dimensional nitrogen-doped carbon xerogel diamond nanoparticles, CDNPs support is reported. The as-prepared CDNPs support was functionalized with a Keggin-type polyoxomolybdate via the hydrothermal process (POM@CDNPs). As the characterization techniques revealed, this nanocomposite possesses a three-dimensional structure, high density of nitrogen doping, and well-dispersed porous pyramidal morphology of POM, making it a promising catalyst for ORR in alkaline medium. The POM@CDNPs nanocomposite exhibits an outstanding activity for ORR with a limiting current density that reaches -7.30 mA cm-2 at 0.17 V vs. RHE. Moreover, a half-wave potential of 0.773 V is delivered with a stability of about 99.9% after the 100th repetitive cycle as this catalyst forces the ORR to the direct-four-electron pathway. This work spots the advantages of hybridizing the sp3 of the nanodiamond with the sp2 of the carbon xerogels to increase the conductivity of the support material. In addition, the role of the porous pyramidal morphology of the POM on the activity of the nanocomposite was evaluated. This study suggests using advanced carbon-based electro-catalysts with outstanding activity and stability.

7.
ChemSusChem ; 13(6): 1629-1636, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31328401

RESUMEN

Graphene oxide (GO) nanosheets show good electrical conductivity and corrosion resistance in electrochemical devices. However, strong van der Waals attraction between adjacent nanosheets causes GO materials to collapse, reducing the exposed surfaces and limiting electron/ion transport in porous electrodes. GO nanosheets mixed with Zn5 (OH)8 (NO3 )2 ⋅2 H2 O (ZnON) nanoplates create a layered composite structure. Exposing the resultant GO/ZnON to 2-methylimidazole vapor leads to the conversion of ZnON into the zeolitic imidazolate framework ZIF-8. The transformation of ZnON into ZIF-8 leads to a huge physical expansion of the interlayer space between the GO sheets. Annealing the material at high temperature caused the ZIF-8 to be converted into highly porous nitrogen-doped carbon, but the GO nanosheets maintained a large separation and high surface area. The morphology and porous structure of the post-annealing carbon material was sensitive to the initial ratio of ZnON to GO. The optimized sample exhibited several favorable features, including a large surface area, high degree of graphitization, and a high amount of nitrogen doping. Using chemical vapor deposition of metal-organic frameworks to physically expand nanomaterials is a novel method to increase the surface area and porosity of materials. It enabled the synthesis of nanoporous carbon electrodes with high capacitance, good rate capability, and long cyclic stability in supercapacitor devices.

8.
Nanomaterials (Basel) ; 9(5)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117195

RESUMEN

This work reports the successful preparation of nanoporous iron oxide/carbon composites through the in-situ growth of Prussian blue (PB) nanoparticles on the surface of graphene oxide (GO) nanosheets. The applied thermal treatment allows the conversion of PB nanoparticles into iron oxide (Fe2O3) nanoparticles. The resulting iron oxide/carbon composite exhibits higher specific capacitance at all scan rates than pure GO and Fe2O3 electrodes due to the synergistic contribution of electric double-layer capacitance from GO and pseudocapacitance from Fe2O3. Notably, even at a high current density of 20 A g-1, the iron oxide/carbon composite still shows a high capacitance retention of 51%, indicating that the hybrid structure provides a highly accessible path for diffusion of electrolyte ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA