Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(6): 2807-2821, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30649516

RESUMEN

Epstein-Barr virus proteins EBNA3A, EBNA3B and EBNA3C control hundreds of host genes after infection. Changes in epigenetic marks around EBNA3-regulated genes suggest that they exert transcriptional control in collaboration with epigenetic factors. The roles of polycomb repressive complex (PRC)2 subunit SUZ12 and of PRC1 subunit BMI1 were assessed for their importance in EBNA3-mediated repression and activation. ChIP-seq experiments for SUZ12 and BMI1 were performed to determine their global localization on chromatin and analysis offered further insight into polycomb protein distribution in differentiated cells. Their localization was compared to that of each EBNA3 to resolve longstanding questions about the EBNA3-polycomb relationship. SUZ12 did not co-localize with any EBNA3, whereas EBNA3C co-localized significantly and co-immunoprecipitated with BMI1. In cells expressing a conditional EBNA3C, BMI1 was sequestered to EBNA3C-binding sites after EBNA3C activation. When SUZ12 or BMI1 was knocked down in the same cells, SUZ12 did not contribute to EBNA3C-mediated regulation. Surprisingly, after BMI1 knockdown, EBNA3C repressed equally efficiently but host gene activation by EBNA3C was impaired. This overturns previous assumptions about BMI1/PRC1 functions during EBNA3C-mediated regulation, for the first time identifies directly a host factor involved in EBNA3-mediated activation and provides a new insight into how PRC1 can be involved in gene activation.


Asunto(s)
Antígenos Nucleares del Virus de Epstein-Barr/fisiología , Interacciones Huésped-Patógeno/genética , Complejo Represivo Polycomb 1/fisiología , Activación Transcripcional , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Herpesvirus Humano 4/fisiología , Humanos , Complejo Represivo Polycomb 1/metabolismo , Unión Proteica
2.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30135119

RESUMEN

Epstein-Barr virus nuclear antigen 3C (EBNA3C) is a well-defined repressor of host gene expression in B cells transformed by Epstein-Barr virus (EBV) that cooperates with various cellular factors. It is established that EBNA3C interacts with the cellular factor RBPJ (RBP-Jκ or CBF1) through two distinct motifs: the TFGC motif, also called the homology domain (HD) motif, and the VWTP motif. In this study, we investigated the role of each motif in EBNA3C transcriptional repression activity by using two novel recombinant viruses with single RBPJ interaction motifs mutated (EBNA3C HDmut and EBNA3C W227S). Infection of primary B cells with either of these recombinant EBVs led to the successful establishment of lymphoblastoid cell lines (LCLs). Gene expression analysis showed that full repression of EBNA3C target genes is not achieved by EBNA3C HDmut compared to that with EBNA3C W227S or the EBNA3C wild type (WT). Focusing on the well-characterized EBNA3C-repressed genes COBLL1, ADAM28, and ADAMDEC1, we investigated the mechanism of EBNA3C-mediated transcriptional repression. Chromatin immunoprecipitation (ChIP) analysis indicated that EBNA3C HDmut is still able to recruit Polycomb proteins BMI1 and SUZ12 to COBLL1 as efficiently as EBNA3C WT does, leading to the full deposition of the repressive histone mark H3K27me3. However, we found that the activation-associated chromatin mark H3K4me3 is highly enriched at EBNA3C target genes in LCLs expressing EBNA3C HDmut. We show here that EBNA3C interacts with the histone lysine demethylase KDM2B and that this interaction is important for H3K4me3 removal and for the EBNA3C-mediated repression of COBLL1 and the ADAM28-ADAMDEC1 locus.IMPORTANCE EBV is a virus associated with human cancers and is well known for its ability to transform B lymphocytes into continuously proliferating lymphoblastoid cell lines. EBNA3C is considered an oncoprotein and has been shown to be essential for B cell transformation by EBV. EBNA3C is well characterized as a viral transcription factor, but very little is known about its mechanisms of action. In the present study, we demonstrate that removal of the activating histone mark H3K4me3 and deposition of the repressive mark H3K27me3 by EBNA3C on COBLL1 are achieved by at least two distinct mechanisms. Furthermore, we discovered that EBNA3C interacts with the lysine demethylase KDM2B and that this interaction is important for its transcriptional repressive function. The findings in this study provide new insights into the mechanism used by the oncoprotein EBNA3C to repress cellular target genes.


Asunto(s)
Proteínas ADAM/biosíntesis , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas F-Box/metabolismo , Histonas/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factores de Transcripción/biosíntesis , Linfocitos B/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Antígenos Nucleares del Virus de Epstein-Barr/genética , Expresión Génica/fisiología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteínas de Neoplasias , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo
3.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29367247

RESUMEN

Epstein-Barr virus (EBV) establishes latent infection in human B cells and is associated with a wide range of cancers. The EBV nuclear antigen 3 (EBNA3) family proteins are critical for B cell transformation and function as transcriptional regulators. It is well established that EBNA3A and EBNA3C cooperate in the regulation of cellular genes. Here, we demonstrate that the gene STK39 is repressed only by EBNA3A. This is the first example of a gene regulated only by EBNA3A in EBV-transformed lymphoblastoid cell lines (LCLs) without the help of EBNA3C. This was demonstrated using a variety of LCLs carrying either knockout, revertant, or conditional EBNA3 recombinants. Investigating the kinetics of EBNA3A-mediated changes in STK39 expression showed that STK39 becomes derepressed quickly after EBNA3A inactivation. This derepression is reversible as EBNA3A reactivation represses STK39 in the same cells expressing a conditional EBNA3A. STK39 is silenced shortly after primary B cell infection by EBV, and no STK39-encoded protein (SPAK) is detected 3 weeks postinfection. Chromatin immunoprecipitation (ChIP) analysis indicates that EBNA3A directly binds to a regulatory region downstream of the STK39 transcription start site. For the first time, we demonstrated that the polycomb repressive complex 2 with the deposition of the repressive mark H3K27me3 is not only important for the maintenance of an EBNA3A target gene (STK39) but is also essential for the initial establishment of its silencing. Finally, we showed that DNA methyltransferases are involved in the EBNA3A-mediated repression of STK39IMPORTANCE EBV is well known for its ability to transform B lymphocytes to continuously proliferating lymphoblastoid cell lines. This is achieved in part by the reprogramming of cellular gene transcription by EBV transcription factors, including the EBNA3 proteins that play a crucial role in this process. In the present study, we found that EBNA3A epigenetically silences STK39 This is the first gene where EBNA3A has been found to exert its repressive role by itself, without needing its coregulators EBNA3B and EBNA3C. Furthermore, we demonstrated that the polycomb repressor complex is essential for EBNA3A-mediated repression of STK39 Findings in this study provide new insights into the regulation of cellular genes by the transcription factor EBNA3A.


Asunto(s)
Linfocitos B/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Silenciador del Gen , Herpesvirus Humano 4/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sitio de Iniciación de la Transcripción , Linfocitos B/patología , Linfocitos B/virología , Línea Celular Transformada , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética
4.
PLoS Biol ; 15(8): e2001992, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28771465

RESUMEN

Mature human B cells infected by Epstein-Barr virus (EBV) become activated, grow, and proliferate. If the cells are infected ex vivo, they are transformed into continuously proliferating lymphoblastoid cell lines (LCLs) that carry EBV DNA as extra-chromosomal episomes, express 9 latency-associated EBV proteins, and phenotypically resemble antigen-activated B-blasts. In vivo similar B-blasts can differentiate to become memory B cells (MBC), in which EBV persistence is established. Three related latency-associated viral proteins EBNA3A, EBNA3B, and EBNA3C are transcription factors that regulate a multitude of cellular genes. EBNA3B is not necessary to establish LCLs, but EBNA3A and EBNA3C are required to sustain proliferation, in part, by repressing the expression of tumour suppressor genes. Here we show, using EBV-recombinants in which both EBNA3A and EBNA3C can be conditionally inactivated or using virus completely lacking the EBNA3 gene locus, that-after a phase of rapid proliferation-infected primary B cells express elevated levels of factors associated with plasma cell (PC) differentiation. These include the cyclin-dependent kinase inhibitor (CDKI) p18INK4c, the master transcriptional regulator of PC differentiation B lymphocyte-induced maturation protein-1 (BLIMP-1), and the cell surface antigens CD38 and CD138/Syndecan-1. Chromatin immunoprecipitation sequencing (ChIP-seq) and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) indicate that in LCLs inhibition of CDKN2C (p18INK4c) and PRDM1 (BLIMP-1) transcription results from direct binding of EBNA3A and EBNA3C to regulatory elements at these loci, producing stable reprogramming. Consistent with the binding of EBNA3A and/or EBNA3C leading to irreversible epigenetic changes, cells become committed to a B-blast fate <12 days post-infection and are unable to de-repress p18INK4c or BLIMP-1-in either newly infected cells or conditional LCLs-by inactivating EBNA3A and EBNA3C. In vitro, about 20 days after infection with EBV lacking functional EBNA3A and EBNA3C, cells develop a PC-like phenotype. Together, these data suggest that EBNA3A and EBNA3C have evolved to prevent differentiation to PCs after infection by EBV, thus favouring long-term latency in MBC and asymptomatic persistence.


Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/fisiología , Proteínas Virales/fisiología , Latencia del Virus , Linfocitos B/fisiología , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Código de Histonas , Humanos , Inmunoglobulinas/metabolismo , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/metabolismo
5.
Cell Host Microbe ; 22(1): 61-73.e7, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28704654

RESUMEN

The human tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) establish persistent infections in B cells. KSHV is linked to primary effusion lymphoma (PEL), and 90% of PELs also contain EBV. Studies on persistent KSHV infection in vivo and the role of EBV co-infection in PEL development have been hampered by the absence of small animal models. We developed mice reconstituted with human immune system components as a model for KSHV infection and find that EBV/KSHV dual infection enhanced KSHV persistence and tumorigenesis. Dual-infected cells displayed a plasma cell-like gene expression pattern similar to PELs. KSHV persisted in EBV-transformed B cells and was associated with lytic EBV gene expression, resulting in increased tumor formation. Evidence of elevated lytic EBV replication was also found in EBV/KSHV dually infected lymphoproliferative disorders in humans. Our data suggest that KSHV augments EBV-associated tumorigenesis via stimulation of lytic EBV replication.


Asunto(s)
Coinfección , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/patogenicidad , Neoplasias/virología , Animales , Linfocitos B/virología , Línea Celular Tumoral , Citocinas/sangre , ADN Viral/análisis , Modelos Animales de Enfermedad , Infecciones por Virus de Epstein-Barr/sangre , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Genes Virales/genética , Infecciones por Herpesviridae/sangre , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linfoma de Efusión Primaria/etiología , Linfoma de Efusión Primaria/virología , Ratones , Bazo/patología , Bazo/virología , Tasa de Supervivencia , Replicación Viral
6.
Elife ; 62017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425914

RESUMEN

Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.


Asunto(s)
Apoptosis , Linfocitos B/fisiología , Linfocitos B/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Antígenos de Histocompatibilidad Menor/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Humanos , Ratones
7.
Nucleic Acids Res ; 45(5): 2368-2383, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27903901

RESUMEN

ChIP-seq performed on lymphoblastoid cell lines (LCLs), expressing epitope-tagged EBNA3A, EBNA3B or EBNA3C from EBV-recombinants, revealed important principles of EBNA3 binding to chromatin. When combined with global chromatin looping data, EBNA3-bound loci were found to have a singular character, each directly associating with either EBNA3-repressed or EBNA3-activated genes, but not with both. EBNA3A and EBNA3C showed significant association with repressed and activated genes. Significant direct association for EBNA3B loci could only be shown with EBNA3B-repressed genes. A comparison of EBNA3 binding sites with known transcription factor binding sites in LCL GM12878 revealed substantial co-localization of EBNA3s with RUNX3-a protein induced by EBV during B cell transformation. The beta-subunit of core binding factor (CBFß), that heterodimerizes with RUNX3, could co-immunoprecipitate robustly EBNA3B and EBNA3C, but only weakly EBNA3A. Depletion of either RUNX3 or CBFß with lentivirus-delivered shRNA impaired epitope-tagged EBNA3B and EBNA3C binding at multiple regulated gene loci, indicating a requirement for CBF heterodimers in EBNA3 recruitment during target-gene regulation. ShRNA-mediated depletion of CBFß in an EBNA3C-conditional LCL confirmed the role of CBF in the regulation of EBNA3C-induced and -repressed genes. These results reveal an important role for RUNX3/CBF during B cell transformation and EBV latency that was hitherto unexplored.


Asunto(s)
Factores de Unión al Sitio Principal/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Regulación de la Expresión Génica , Sitios de Unión , Línea Celular , Cromatina/química , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/fisiología , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Factores de Unión al Sitio Principal/fisiología , Elementos de Facilitación Genéticos , Genoma Humano , Humanos , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
8.
J Exp Med ; 213(6): 921-8, 2016 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-27217538

RESUMEN

Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma.


Asunto(s)
Linfoma de Burkitt/inmunología , Citidina Desaminasa/inmunología , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , Regulación Enzimológica de la Expresión Génica/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Reordenamiento Génico de Linfocito B/inmunología , Herpesvirus Humano 4/inmunología , Proteínas de Neoplasias/inmunología , Hipermutación Somática de Inmunoglobulina/inmunología , Linfoma de Burkitt/genética , Línea Celular , Citidina Desaminasa/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Reordenamiento Génico de Linfocito B/genética , Herpesvirus Humano 4/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Elementos de Respuesta/inmunología , Hipermutación Somática de Inmunoglobulina/genética
9.
PLoS Pathog ; 12(1): e1005383, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26751214

RESUMEN

It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells.


Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Regulación Viral de la Expresión Génica/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Interacciones Huésped-Parásitos/genética , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Curr Top Microbiol Immunol ; 391: 61-117, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26428372

RESUMEN

Epstein-Barr virus nuclear antigens EBNA3A , EBNA3B and EBNA3C are a family of three large latency-associated proteins expressed in B cells induced to proliferate by the virus. Together with the other nuclear antigens (EBNA-LP, EBNA2 and EBNA1), they are expressed from a polycistronic transcription unit that is probably unique to B cells. However, compared with the other EBNAs, hitherto the EBNA3 proteins were relatively neglected and their roles in EBV biology rather poorly understood. In recent years, powerful new technologies have been used to show that these proteins are central to the latency of EBV in B cells, playing major roles in reprogramming the expression of host genes affecting cell proliferation, survival, differentiation and immune surveillance. This indicates that the EBNA3s are critical in EBV persistence in the B cell system and in modulating B cell lymphomagenesis. EBNA3A and EBNA3C are necessary for the efficient proliferation of EBV-infected B cells because they target important tumour suppressor pathways--so operationally they are considered oncoproteins. In contrast, it is emerging that EBNA3B restrains the oncogenic capacity of EBV, so it can be considered a tumour suppressor--to our knowledge the first to be described in a tumour virus. Here, we provide a general overview of the EBNA3 genes and proteins. In particular, we describe recent research that has highlighted the complexity of their functional interactions with each other, with specific sites on the human genome and with the molecular machinery that controls transcription and epigenetic states of diverse host genes.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Familia de Multigenes , Proteínas Oncogénicas Virales/genética , Proteínas Supresoras de Tumor/genética
11.
PLoS Pathog ; 11(7): e1005031, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26153983

RESUMEN

We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters--widely reported to have cell transformation-associated activity--are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours--including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28 kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs.


Asunto(s)
Transformación Celular Neoplásica/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , MicroARNs/genética , Linfocitos B/virología , Western Blotting , Inmunoprecipitación de Cromatina , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Inmunoprecipitación , MicroARNs/biosíntesis , Oncogenes , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
J Virol ; 89(10): 5222-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25787276

RESUMEN

UNLABELLED: Epstein-Barr virus (EBV) infects most of the world's population and is causally associated with several human cancers, but little is known about how EBV genetic variation might influence infection or EBV-associated disease. There are currently no published wild-type EBV genome sequences from a healthy individual and very few genomes from EBV-associated diseases. We have sequenced 71 geographically distinct EBV strains from cell lines, multiple types of primary tumor, and blood samples and the first EBV genome from the saliva of a healthy carrier. We show that the established genome map of EBV accurately represents all strains sequenced, but novel deletions are present in a few isolates. We have increased the number of type 2 EBV genomes sequenced from one to 12 and establish that the type 1/type 2 classification is a major feature of EBV genome variation, defined almost exclusively by variation of EBNA2 and EBNA3 genes, but geographic variation is also present. Single nucleotide polymorphism (SNP) density varies substantially across all known open reading frames and is highest in latency-associated genes. Some T-cell epitope sequences in EBNA3 genes show extensive variation across strains, and we identify codons under positive selection, both important considerations for the development of vaccines and T-cell therapy. We also provide new evidence for recombination between strains, which provides a further mechanism for the generation of diversity. Our results provide the first global view of EBV sequence variation and demonstrate an effective method for sequencing large numbers of genomes to further understand the genetics of EBV infection. IMPORTANCE: Most people in the world are infected by Epstein-Barr virus (EBV), and it causes several human diseases, which occur at very different rates in different parts of the world and are linked to host immune system variation. Natural variation in EBV DNA sequence may be important for normal infection and for causing disease. Here we used rapid, cost-effective sequencing to determine 71 new EBV sequences from different sample types and locations worldwide. We showed geographic variation in EBV genomes and identified the most variable parts of the genome. We identified protein sequences that seem to have been selected by the host immune system and detected variability in known immune epitopes. This gives the first overview of EBV genome variation, important for designing vaccines and immune therapy for EBV, and provides techniques to investigate relationships between viral sequence variation and EBV-associated diseases.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Variación Genética , Genoma Viral , Herpesvirus Humano 4/genética , Secuencia de Aminoácidos , Antígenos Virales/genética , Portador Sano/virología , Línea Celular Tumoral , ADN Viral/genética , Epítopos de Linfocito T/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/clasificación , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Filogenia , Polimorfismo de Nucleótido Simple , Recombinación Genética , Proteínas de la Matriz Viral/genética
13.
Front Genet ; 4: 212, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24167519

RESUMEN

Viruses that establish a persistent infection, involving intracellular latency, commonly stimulate cellular DNA synthesis and sometimes cell division early after infection. However, most cells of metazoans have evolved "fail-safe" responses that normally monitor unscheduled DNA synthesis and prevent cell proliferation when, for instance, cell proto-oncogenes are "activated" by mutation, amplification, or chromosomal rearrangements. These cell intrinsic defense mechanisms that reduce the risk of neoplasia and cancer are collectively called oncogenic stress responses (OSRs). Mechanisms include the activation of tumor suppressor genes and the so-called DNA damage response that together trigger pathways leading to cell cycle arrest (e.g., cell senescence) or complete elimination of cells (e.g., apoptosis). It is not surprising that viruses that can induce cellular DNA synthesis and cell division have the capacity to trigger OSR, nor is it surprising that these viruses have evolved countermeasures for inactivating or bypassing OSR. The main focus of this review is how the human tumor-associated Epstein-Barr virus manipulates the host polycomb group protein system to control - by epigenetic repression of transcription - key components of the OSR during the transformation of normal human B cells into permanent cell lines.

14.
PLoS Pathog ; 9(2): e1003187, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23436997

RESUMEN

To explore the role of p16(INK4a) as an intrinsic barrier to B cell transformation by EBV, we transformed primary B cells from an individual homozygous for a deletion in the CDKN2A locus encoding p16(INK4a) and p14(ARF). Using recombinant EBV-BAC viruses expressing conditional EBNA3C (3CHT), we developed a system that allows inactivation of EBNA3C in lymphoblastoid cell lines (LCLs) lacking active p16(INK4a) protein but expressing a functional 14(ARF)-fusion protein (p14/p16). The INK4a locus is epigenetically repressed by EBNA3C--in cooperation with EBNA3A--despite the absence of functional p16(INK4a). Although inactivation of EBNA3C in LCLs from normal B cells leads to an increase in p16(INK4a) and growth arrest, EBNA3C inactivation in the p16(INK4a)-null LCLs has no impact on the rate of proliferation, establishing that the repression of INK4a is a major function of EBNA3C in EBV-driven LCL proliferation. This conditional LCL system allowed us to use microarray analysis to identify and confirm genes regulated specifically by EBNA3C, independently of proliferation changes modulated by the p16(INK4a)-Rb-E2F axis. Infections of normal primary B cells with recombinant EBV-BAC virus from which EBNA3C is deleted or with 3CHT EBV in the absence of activating ligand 4-hydroxytamoxifen, revealed that EBNA3C is necessary to overcome an EBV-driven increase in p16(INK4a) expression and concomitant block to proliferation 2-4 weeks post-infection. If cells are p16(INK4a)-null, functional EBNA3C is dispensable for the outgrowth of LCLs.


Asunto(s)
Linfocitos B/virología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Represión Epigenética/genética , Herpesvirus Humano 4/fisiología , Activación de Linfocitos , Antígenos Virales/genética , Antígenos Virales/metabolismo , Línea Celular , Proliferación Celular , Supervivencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Sitios Genéticos , Herpesvirus Humano 4/inmunología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Cultivo Primario de Células , Latencia del Virus
15.
Nucleic Acids Res ; 40(15): 7233-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22584624

RESUMEN

Detailed analyses of the chromatin around the BIM promoter has revealed that latent Epstein-Barr virus (EBV) triggers the recruitment of polycomb repressive complex 2 (PRC2) core subunits and the trimethylation of histone H3 lysine 27 (H3K27me3) at this locus. The recruitment is absolutely dependent on nuclear proteins EBNA3A and EBNA3C; what is more, epitope-tagged EBNA3C could be shown bound near the transcription start site (TSS). EBV induces no consistent changes in the steady-state expression of PRC2 components, but lentivirus delivery of shRNAs against PRC2 and PRC1 subunits disrupted EBV repression of BIM. The activation mark H3K4me3 is largely unaltered at this locus irrespective of H3K27me3 status, suggesting the establishment of a 'bivalent' chromatin domain. Consistent with the 'poised' nature of these domains, RNA polymerase II (Pol II) occupancy was not altered by EBV at the BIM TSS, but analysis of phospho-serine 5 on Pol II indicated that EBNA3A and EBNA3C together inhibit initiation of BIM transcripts. B cell lines carrying EBV encoding a conditional EBNA3C-oestrogen receptor-fusion revealed that this epigenetic repression of BIM was reversible, but took more than 3 weeks from when EBNA3C was inactivated.


Asunto(s)
Antígenos Virales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Herpesvirus Humano 4/fisiología , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/metabolismo , Proteína 11 Similar a Bcl2 , Línea Celular , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas del Grupo Polycomb , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Transcripción Genética
16.
J Clin Invest ; 122(4): 1487-502, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22406538

RESUMEN

Epstein-Barr virus (EBV) persistently infects more than 90% of the human population and is etiologically linked to several B cell malignancies, including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B cell lymphoma (DLBCL). Despite its growth transforming properties, most immune-competent individuals control EBV infection throughout their lives. EBV encodes various oncogenes, and of the 6 latency-associated EBV-encoded nuclear antigens, only EBNA3B is completely dispensable for B cell transformation in vitro. Here, we report that infection with EBV lacking EBNA3B leads to aggressive, immune-evading monomorphic DLBCL-like tumors in NOD/SCID/γc-/- mice with reconstituted human immune system components. Infection with EBNA3B-knockout EBV (EBNA3BKO) induced expansion of EBV-specific T cells that failed to infiltrate the tumors. EBNA3BKO-infected B cells expanded more rapidly and secreted less T cell-chemoattractant CXCL10, reducing T cell recruitment in vitro and T cell-mediated killing in vivo. B cell lines from 2 EBV-positive human lymphomas encoding truncated EBNA3B exhibited gene expression profiles and phenotypic characteristics similar to those of tumor-derived lines from the humanized mice, including reduced CXCL10 secretion. Screening EBV-positive DLBCL, HL, and BL human samples identified additional EBNA3B mutations. Thus, EBNA3B is a virus-encoded tumor suppressor whose inactivation promotes immune evasion and virus-driven lymphomagenesis.


Asunto(s)
Transformación Celular Viral/genética , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/fisiología , Genes Supresores de Tumor , Genes Virales , Herpesvirus Humano 4/fisiología , Linfoma de Células B/virología , Trastornos Linfoproliferativos/virología , Complicaciones Posoperatorias/virología , Proteínas Supresoras de Tumor/fisiología , Infecciones Tumorales por Virus/virología , Animales , Línea Celular Transformada/trasplante , Línea Celular Transformada/virología , Quimiocina CXCL10/biosíntesis , Quimiocina CXCL10/deficiencia , Quimiocina CXCL10/genética , Quimera , Análisis Mutacional de ADN , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Eliminación de Gen , Trasplante de Células Madre Hematopoyéticas , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Humanos , Interferón gamma/deficiencia , Interferón gamma/genética , Linfoma de Células B/genética , Trastornos Linfoproliferativos/genética , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutación , Complicaciones Posoperatorias/genética , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Infecciones Tumorales por Virus/genética
17.
J Virol ; 86(3): 1683-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22090140

RESUMEN

Meq is the major Marek's disease virus (MDV)-encoded oncoprotein and is essential for T-cell lymphomagenesis. Meq and several noncoding RNAs, including three microRNA (MiR) clusters, are expressed from the repeats of the MDV genome during latent infection of T cells. To investigate the state of the chromatin in this and flanking regions, we carried out chromatin immunoprecipitation (ChIP) analysis of covalent histone modifications and associated bound proteins. T-cell lines and a lymphoma were compared. The chromatin around the promoters for Meq and the noncoding RNAs in both cell lines and the lymphoma were associated with H3K9 acetylation and H3K4 trimethylation, which are marks of transcriptionally active chromatin. These correlated with bound Meq-c-Jun heterodimers. The only binding site for Meq homodimers is located at the lytic origin of replication (OriLyt), next to the lytic gene pp38. This region lacked active marks and was associated with repressive histone modifications (H3K27 and H3K9 trimethylation). DNA CpG methylation was investigated using methylated DNA precipitation (MeDP). In cell lines, DNA methylation was abundant across the repeats but noticeably reduced or absent around the active promoters. In primary tumors, CpG methylation occurred less than 2 months after infection, focused within the ICP4 gene. These data suggest that nonrandom de novo DNA methylation occurs early in lymphomagenesis. In addition, the histone data indicate a role for Meq in the epigenetic regulation of the MDV genome repeats in transformed T cells and suggest that the OriLyt region and the Meq/MiR region might be separated by chromatin boundary elements, and preliminary data on CTCF binding are consistent with this.


Asunto(s)
Epigénesis Genética , Linfoma/virología , Mardivirus/genética , Linfocitos T/virología , Latencia del Virus/genética , Animales , Secuencia de Bases , Aves , Línea Celular , Línea Celular Tumoral , Metilación de ADN , Cartilla de ADN , Humanos , Linfoma/patología , Mardivirus/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
PLoS One ; 6(12): e28506, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174825

RESUMEN

Latent Epstein-Barr virus (EBV) has been shown to protect Burkitt's lymphoma-derived B cells from apoptosis induced by agents that cause damage to DNA, in the context of mutant p53. This protection requires expression of the latency-associated nuclear proteins EBNA3A and EBNA3C and correlates with their ability to cooperate in the repression of the gene encoding the pro-apoptotic, BH3-only protein BIM. Here we confirm that latent EBV in B cells also inhibits apoptosis induced by two other agents--ionomycin and staurosporine--and show that these act by a distinct pathway that involves a p53-independent increase in expression of another pro-apoptotic, BH3-only protein, NOXA. Analyses employing a variety of B cells infected with naturally occurring EBV or B95.8 EBV-BAC recombinant mutants indicated that the block to NOXA induction does not depend on the well-characterized viral latency-associated genes (EBNAs 1, 2, 3A, 3B, 3C, the LMPs or the EBERs) or expression of BIM. Regulation of NOXA was shown to be at least partly at the level of mRNA and the requirement for NOXA to induce cell death in this context was demonstrated by NOXA-specific shRNA-mediated depletion experiments. Although recombinant EBV with a deletion removing the BHRF1 locus--that encodes the BCL2-homologue BHRF1 and three microRNAs--partially abrogates protection against ionomycin and staurosporine, the deletion has no effect on the EBV-mediated block to NOXA accumulation.


Asunto(s)
Apoptosis , Linfocitos B/patología , Linfocitos B/virología , Herpesvirus Humano 4/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Latencia del Virus , Apoptosis/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Etopósido/farmacología , Eliminación de Gen , Regulación Viral de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Sitios Genéticos/genética , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/genética , Humanos , Ionomicina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Estaurosporina/farmacología , Proteínas Virales/metabolismo
19.
Cell Host Microbe ; 8(6): 510-22, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21147465

RESUMEN

Epstein-Barr virus (EBV), an oncogenic herpesvirus that causes human malignancies, infects and immortalizes primary human B cells in vitro into indefinitely proliferating lymphoblastoid cell lines, which represent a model for EBV-induced tumorigenesis. The immortalization efficiency is very low, suggesting that an innate tumor suppressor mechanism is operative. We identify the DNA damage response (DDR) as a major component of the underlying tumor suppressor mechanism. EBV-induced DDR activation was not due to lytic viral replication, nor did the DDR marks colocalize with latent episomes. Rather, a transient period of EBV-induced hyperproliferation correlated with DDR activation. Inhibition of the DDR kinases ATM and Chk2 markedly increased transformation efficiency of primary B cells. Further, the viral latent oncoprotein EBNA3C was required to attenuate the EBV-induced DDR. We propose that heightened oncogenic activity in early cell divisions activates a growth-suppressive DDR that is attenuated by viral latency products to induce cell immortalization.


Asunto(s)
Linfocitos B/virología , Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas de Unión al ADN/fisiología , Herpesvirus Humano 4/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos B/patología , Proliferación Celular , Transformación Celular Viral , Células Cultivadas , Quinasa de Punto de Control 2 , Antígenos Nucleares del Virus de Epstein-Barr/fisiología , Humanos , Transducción de Señal
20.
PLoS One ; 5(11): e13979, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21085583

RESUMEN

Epstein-Barr virus (EBV) is able to drive the transformation of B-cells, resulting in the generation of lymphoblastoid cell lines (LCLs) in vitro. EBV nuclear proteins EBNA3A and EBNA3C are necessary for efficient transformation, while EBNA3B is dispensable. We describe a transcriptome analysis of BL31 cells infected with a series of EBNA3-knockout EBVs, including one deleted for all three EBNA3 genes. Using Affymetrix Exon 1.0 ST microarrays analysed with the MMBGX algorithm, we have identified over 1000 genes whose regulation by EBV requires one of the EBNA3s. Remarkably, a third of the genes identified require more than one EBNA3 for their regulation, predominantly EBNA3C co-operating with either EBNA3B, EBNA3A or both. The microarray was validated by real-time PCR, while ChIP analysis of a selection of co-operatively repressed promoters indicates a role for polycomb group complexes. Targets include genes involved in apoptosis, cell migration and B-cell differentiation, and show a highly significant but subtle alteration in genes involved in mitosis. In order to assess the relevance of the BL31 system to LCLs, we analysed the transcriptome of a set of EBNA3B knockout (3BKO) LCLs. Around a third of the genes whose expression level in LCLs was altered in the absence of EBNA3B were also altered in 3BKO-BL31 cell lines.Among these are TERT and TCL1A, implying that EBV-induced changes in the expression of these genes are not required for B-cell transformation. We also identify 26 genes that require both EBNA3A and EBNA3B for their regulation in LCLs. Together, this shows the complexity of the interaction between EBV and its host, whereby multiple EBNA3 proteins co-operate to modulate the behaviour of the host cell.


Asunto(s)
Antígenos Virales/genética , Cromatina/metabolismo , Perfilación de la Expresión Génica , Antígenos Virales/fisiología , Línea Celular Tumoral , Análisis por Conglomerados , Epigenómica , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA